

Service Manual

Serial Number Range

Z-80/60

from Z8013-4592

Part No. 1258748

Rev A

November 2014

Introduction

Important

Read, understand and obey the safety rules and operating instructions in the appropriate operator's manual on your machine before attempting any maintenance or repair procedure.

This manual provides detailed scheduled maintenance information for the machine owner and user. It also provides troubleshooting fault codes and repair procedures for qualified service professionals.

Basic mechanical, hydraulic and electrical skills are required to perform most procedures. However, several procedures require specialized skills, tools, lifting equipment and a suitable workshop. In these instances, we strongly recommend that maintenance and repair be performed at an authorized Genie dealer service center.

Compliance

Machine Classification

Group B/Type 3 as defined by ISO 16368

Machine Design Life

Unrestricted with proper operation, inspection and scheduled maintenance.

Technical Publications

Genie has endeavored to deliver the highest degree of accuracy possible. However, continuous improvement of our products is a Genie policy. Therefore, product specifications are subject to change without notice.

Readers are encouraged to notify Genie of errors and send in suggestions for improvement. All communications will be carefully considered for future printings of this and all other manuals.

Contact Us:

http://www.genielift.com e-mail:awp.techpub@terex.com

Serial Number Information

Genie offers the following Service Manuals for these models:

Title Part No.

Genie Z-80 Service Manual (from serial number 101 to 4591)88619

Copyright © 2014 Terex Corporation

1258748 Rev A November 2014 Second Edition, First Printing

Genie and S is a registered trademark of Terex South Dakota, Inc. in the USA and many other countries.

Printed on recycled paper

Printed in U.S.A.

Genîe

ΪÏ

Z-80/60 Part No. 1258748

Revision History

Revision	Date	Section	Procedure / Schematic Page / Description
А	11/2014		Initial release
DEFEDENCE	-VAMBLES		

REFERENCE EXAMPLES:

2-1_Section 2_Specifications Page #.

3-3_Section 3_Maintenance Procedure Page #.

4-48_Section 4_Repair Procedure Page #.

Fault Codes_Section 5.

6-5_Section 6_Schematic Page #.

Electronic Version

Click on any procedure or page number highlighted in blue to view the update.

Genîe

REVISION HISTORY, CONTINUED

Revision	Date	Section	Procedure / Schematic Page / Description
REFERENCE F	YAMDI FQ:		

- 2-1_Section 2_Specifications Page #.
 3-3_Section 3_Maintenance Procedure Page #.
- 4-48_Section 4_Repair Procedure Page #.

Fault Codes_Section 5.

6-5_Section 6_Schematic Page #.

Electronic Version

Click on any procedure or page number highlighted in blue to view the update.

Genîe

INTRODUCTION

Serial Number Legend

Model: Z-80/60

Serial number: Z8006-12345

Model year: 2014 Manufacture date: 01/05/14

Electrical schematic number: ES0508

Machine unladen weight:

Rated work load (including occupants): 500 lb / 227 kg

Maximum number of platfrm occupants: 2 Maximum allowable side force : 150 lb / 670 N Maximum allowable inclination of the chassis:

0 deg

Maximum wind speed: 28 mph/ 12.5 m/s

Maximum platform height: 86 ft/ 26.38 m

Maximum platform reach: 60 ft/ 18.28 m

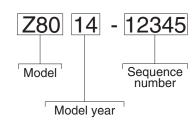
Gradeability: N/A

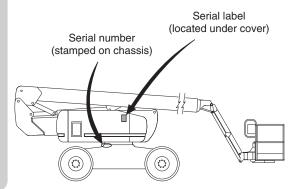
Country of manufacture: USA This machine complies with:

ANSI A92.5 CAN B.354.4

Terex South Dakota, Inc. 500 Oakwood Road

PO Box 1150


Watertown, SD 57201


USA

PN - 77055

This page intentionally left blank.

Safety Rules

Danger

Failure to obey the instructions and safety rules in this manual, and the Operator's Manual will result in death or serious injury.

Many of the hazards identified in the operator's manual are also safety hazards when maintenance and repair procedures are performed.

Do Not Perform Maintenance Unless:

- ✓ You are trained and qualified to perform maintenance on this machine.
- ✓ You read, understand and obey:
 - manufacturer's instructions and safety rules
 - employer's safety rules and worksite regulations
 - applicable governmental regulations
- ✓ You have the appropriate tools, lifting equipment and a suitable workshop.

SAFETY RULES

Personal Safety

Any person working on or around a machine must be aware of all known safety hazards. Personal safety and the continued safe operation of the machine should be your top priority.

Read each procedure thoroughly. This manual and the decals on the machine use signal words to identify the following:

Safety alert symbol—used to alert personnel to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

ADANGER

Used to indicate the presence of an imminently hazardous situation which, if not avoided, will result in death or serious injury.

AWARNING

Used to indicate the presence of a potentially hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

With safety alert symbol—used to indicate the presence of a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

Used to indicate the presence of a potentially hazardous situation which, if not avoided, may result in property damage.

Note: Used to indicate operation or maintenance information.

Be sure to wear protective eye wear and other protective clothing if the situation warrants it.

Be aware of potential crushing hazards such as moving parts, free swinging or unsecured components when lifting or

placing loads. Always wear approved steel-toed shoes.

Workplace Safety

Be sure to keep sparks, flames and lighted tobacco away from flammable and combustible materials like battery gases and engine fuels. Always have an approved fire extinguisher within easy reach.

Be sure that all tools and working areas are properly maintained and ready for use. Keep work surfaces clean and free of debris that could get into machine components and

cause damage.

Be sure any forklift, overhead crane or other lifting or supporting device is fully capable of supporting and stabilizing the

weight to be lifted. Use only chains or straps that are in good condition and of ample capacity.

Be sure that fasteners intended for one time use (i.e., cotter pins and self-locking nuts) are not reused. These components

may fail if they are used a second time.

Be sure to properly dispose of old oil or other fluids. Use an approved container. Please be environmentally safe.

Be sure that your workshop or work area is properly ventilated and well lit.

Table of Contents

Introduction		
	Important Information	ii
	Serial Number Legend	iii
Section 1	Safety Rules	
	General Safety Rules	<i>v</i>
Section 2	Specifications	
	Machine Specifications	2 - 1
	Performance Specifications	2 - 2
	Function Speeds Specifications	2 - 2
	Hydraulic Oil Specifications	2 - 3
	Hydraulic Component Specifications	2 - 5
	Manifold Component Specifications	2 - 6
	Valve Coil Resistance Specifications	2 - 6
	Continental TME27 Engine	2 - 8
	Deutz TD2011L04i Engine	2 - 9
	Deutz TD2.9 L4 Engine	2 - 11
	Perkins 804D-33 Engine	2 - 13
	Perkins 404F-22T Engine	2 - 14
	Machine Torque Specifications	2 - 15
	Hydraulic Hose and Fitting Torque Specifications	2 - 16
	SAE and Metric Fasteners Torque Charts	2 - 18
Section 3	Scheduled Maintenance Procedures	
	Introduction	3 - 1
	Pre-Delivery Preparation	3 - 3
	Maintenance Inspection Report	3 - 5

Section 3	Sche	duled Maintenance Procedures, continued	
	Chec	cklist A Procedures	
	A-1	Inspect the Manuals and Decals	3 - 7
	A-2	Perform Pre-operation Inspection	3 - 8
	A-3	Perform Function Tests	3 - 8
	A-4	Perform Engine Maintenance - Continental Models	3 - 9
	A-5	Perform Engine Maintenance - Deutz Models	3 - 9
	A-6	Perform Engine Maintenance - Perkins Models	3 - 10
	A-7	Check the Hydraulic Filter Condition Indicators	3 - 10
	A-8	Perform 30 Day Service	3 - 11
	A-9	Perform Engine Maintenance - Continental Models	3 - 12
	A-10	Grease Turntable Rotation Bearing and Rotate Gear	3 - 12
	A-11	Perform Engine Maintenance - Continental Models	3 - 13
	A-12	Perform Engine Maintenance - Perkins Models	3 - 13
	A-13	Replace the Drive Hub Oil	3 - 15
	Chec	klist B Procedures	
	B-1	Inspect the Batteries	3 - 17
	B-2	Inspect the Electrical Wiring	3 - 18
	B-3	Test the Key Switch	3 - 20
	B-4	Check the Exhaust System	3 - 20
	B-5	Inspect the Engine Air Filter	3 - 21
	B-6	Engine Maintenance - Continental Models	3 - 22
	B-7	Engine Maintenance - Perkins Models	3 - 22
	B-8	Check the Tires, Wheels and Lug Nut Torque	3 - 23
	B-9	Confirm the Proper Brake Configuration	3 - 23
	B-10	Check the Drive Hub Oil Level and Fastener Torque	3 - 24
	B-11	Test the Ground Control Override	3 - 25
	B-12	Test the Platform Self-leveling	3 - 26

Section 3	Sche	eduled Maintenance Procedures, continued	
	B-13	Test the Engine Idle Select Operation	3 - 27
	B-14	Test the Fuel Select Operation - Gasoline/LPG Models	3 - 28
	B-15	Test the Drive Brakes	3 - 29
	B-16	Test the Drive Speed - Stowed Position	3 - 29
	B-17	Test the Drive Speed - Raised or Extended Position	3 - 30
	B-18	Test the Alarm and Optional Flashing Beacon	3 - 31
	B-19	Perform Hydraulic Oil Analysis	3 - 31
	B-20	Test the Safety Envelope and Safety Circuits	3 - 32
	B-21	Test the Primary Boom Self-leveling	3 - 34
	B-22	Test the Primary Boom Angle Sensor	3 - 35
	B-23	Inspect the Fuel Tank Cap Venting Systems	3 - 36
	Chec	cklist C Procedures	
	C-1	Perform Engine Maintenance - Continental Models	3 - 38
	C-2	Perform Engine Maintenance - Deutz Models	3 - 38
	C-3	Perform Engine Maintenance - Perkins Models	3 - 39
	C-4	Replace the Engine Air Filter	3 - 39
	C-5	Check and Adjust Engine RPM	3 - 40
	C-6	Grease the Platform Overload Mechanism (if equipped)	3 - 42
	C-7	Test the Platform Overload System (if equipped)	3 - 42
	Chec	cklist D Procedures	
	D-1	Check the Boom Wear Pads	3 - 45
	D-2	Check the Free-wheel Configuration	3 - 46
	D-3	Check the Turntable Rotation Bearing Bolts	3 - 47
	D-4	Inspect for Turntable Bearing Wear	3 - 49
	D-5	Replace the Drive Hub Oil	3 - 50
	D-6	Replace the Hydraulic Filter Elements	3 - 52

Section 3	Scheduled Maintenance Procedures, continued			
	D-7	Perform Engine Maintenance - Continental Models	3 - 53	
	D-8	Perform Engine Maintenance - Deutz Models		
	D-9	Perform Engine Maintenance - Perkins Models	3 - 54	
	Che	cklist E Procedures		
	E-1	Test or Replace the Hydraulic Oil	3 - 55	
	E-2	Perform Engine Maintenance - Perkins Models	3 - 57	
	E-4	Perform Engine Maintenance - Deutz Models	3 - 57	
	E-5	Perform Engine Maintenance - Perkins Models		
	E-6	Perform Cooling System Maintenance - Perkins 404F Models	3 - 58	
Section 4	Repa	air Procedures		
	Intro	duction	4 - 1	
	Disp	lay Module	4 - 2	
	Plati	form Controls		
	1-1	ALC-1000 Circuit Board	4 - 10	
	1-3	Joysticks	4 - 11	
	Plati	form Components		
	2-1	Platform	4 - 18	
	2-2	Platform Leveling Cylinder	.4 - 198	
	2-3	Platform Rotator	4 - 20	
	2-4	Calibrate the Platform Overload System (if equipped)	. 4 - 232	
	2-5	How to Clear the Platform Overload Recovery Message	4 - 25	

Section 4	Repa	Repair Procedures, continued		
	Jib B	Boom Components		
	3-1	Jib Boom	4 - 26	
	3-2	Jib Boom Lift Cylinder	4 - 28	
	Boor	m Components		
	4-1	Primary Boom Cable Track	4 - 30	
	4-2	Primary Boom	4 - 33	
	4-3	Primary Boom Lift Cylinder	4 - 36	
	4-4	Primary Boom Extension Cylinder	4 - 38	
	4-5	Primary Boom Angle Sensor	4 - 39	
	4-6	Secondary Boom Cable Track	4 - 42	
	4-7	Secondary Boom	4 - 43	
	4-8	Secondary Boom Lift Cylinder	4 - 45	
	4-9	Secondary Boom Extension Cylinder	4 - 47	
	Engi	nes		
	5-1	RPM Adjustment	4 - 49	
	5-2	Flex Plate	4 - 49	
	5-3	Engine Fault Codes - Gasoline/LPG Models	4 - 55	
	5-4	How to Access Perkins 404F Engine Regeneration Service	4 - 55	
	Grou	und Controls		
	6-1	Service Bypass/Recovery Keyswitch	4 - 57	
	6-2	Circuit Boards	4 - 59	
	6-3	Membrane Decal	4 - 60	

Section 4	Repa	Repair Procedures, continued			
	Hydr	Hydraulic Pumps			
	7-1	Function Pump	4 - 61		
	7-2	Drive Pump	4 - 62		
	Mani	folds			
	8-1	Function Manifold - View 1	4 - 64		
	8-2	Function Manifold - View 2	4 - 66		
	8-3	Valve Adjustments - Function Manifold	4 - 68		
	8-4	Platform Manifold	4 - 74		
	8-5	Turntable Rotation Manifold	4 - 76		
	8-6	Platform Rotate Manifold	4 - 77		
	8-7	2 Wheel Steer and Oscillate Manifold	4 - 78		
	8-8	4 Wheel Steer and Oscillate Manifold	4 - 84		
	8-9	Oil Diverter Manifold (welder option)	4 - 89		
	8-10	Traction Manifold, 2WD	4 - 90		
	8-11	Valve Adjustments, 2WD Traction Manifold	4 - 92		
	8-12	Traction Manifold, 4WD	4 - 94		
	8-13	Valve Adjustments, 4WD Traction Manifold	4 - 96		
	8-14	Valve Coils	4 - 97		
	Turn	table Rotation Components			
	9-1	Turntable Rotation Assembly	4 - 99		
	Axle	Components			
	10-1	Steer Sensors	4 - 101		
	10-2	Oscillating Axle Cylinders	4 - 105		

Section 5	Fault Codes			
	Introduction			
	Fault Diagnostics Control System	5 - 2		
	How to Clear Secopndary Boom Safety Switch Faults	5 - 10		
	Fault Code Display- Deutz TD2.9 and Perkins 404F Engines	5 - 12		
	Deutz TD2.9 Engine Fault Code Chart	5 - 13		
	Perkins 404F-22T Engine Fault Code Chart	5 - 28		
	Continental Engine ECM Fault Code Chart	5 - 31		
Section 6	Schematics			
	Introduction	6 - 1		
	Wire Circuit Legend	6 - 2		
	Limit Switches and Angle Sensors	6 - 8		
	Drive Chassis and Platform Controller Pin Legend	6 - 10		
	Turntable Controller Pin Legend	6 - 11		
	Engine Relay and Fuse Panel Legend	6 - 12		
	Electrical Symbols Legend	6 - 14		
	Hydraulic Symbols Legend	6 - 15		
	Electrical Schematic - Engine Options Deutz TD2.9 Engine	6 - 18		
	Electrical Schematic - Engine Options Deutz TD2.9 Engine Wiring	6 - 19		
	Electrical Schematic - Engine Options Perkins 404F-22T Engine	6 - 22		
	Electrical Schematic - Engine Options Perkins 404F-22T Engine Wiring	6 - 23		

Section 6	Schematics, continued	
	Electrical Schematic - Engine Options Perkins 804D Engine	- 26
	Electrical Schematic - Engine Options Continental TME27 Engine	- 27
	Electrical Schematic - Safety Circuits	- 30
	Electrical Schematic - Generator Options, Electrical	- 31
	Electrical Schematic - Welder Generator Option	- 34
	Electrical Schematic - Generator Options, Hydraulics	- 35
	Electrical Schematic (ES0508H) at end of man	nual
	Hydraulic Schematic, 2 Wheel Drive (2 and 4 Wheel Steer)	- 38
	Hydraulic Schematic, 4 Wheel Drive (2 and 4 Wheel Steer)	- 39

Specifications

Machine Specifications

Tires and wheels	
Tires and wheels	
Tire size (foam filled and non-marking)	18-625 FF
Tire size (Hi-flotation)	445D50/70
Tire ply rating (foam filled and non-marking)	16
Tire weight, new foam-filled (minimum) (Rough terrain)	622 lbs 282 kg
Tire ply rating (Hi-flotation)	14
Overall tire diameter (foam filled and non-marking)	40.7 in 103.3 cm
Overall tire diameter (Hi-flotation)	45.47 in 115.5 cm
Wheel diameter (foam filled and non-marking)	24.5 in 62.2 cm
Wheel diameter (Hi-flotation)	28 in 71.1 cm
Wheel width (foam filled, non-marking and Hi-flotation	15 in n) 38.1 cm
Tire Pressure (Hi-flotation)	80 lbs / 5.5 bar
Wheel lugs	10 @ 3/4 -16
Lug nut torque, lubricated	320 ft-lbs 434 Nm
Lug nut torque, dry	420 ft-lbs 570 Nm

Fluid capacities	
Fuel tank	35 gallons 132.5 liters
LPG tank	33.5 lbs 15.2 kg
Hydraulic tank	45 gallons 170 liters
Hydraulic system (including tank)	80 gallons 303 liters
Drive hubs	44 fl oz 1.3 liters
Turntable rotation drive h	nub 40 fl oz 1.2 liters
Drive hub oil type:	EP 80-90W gear oil API Service Classification GL5

For operational specification, refer to the Operator's Manual.

Performance Specifications

Drive speed, maximum (models with rough terrain tires)		
Stowed position	40 ft / 8.7-9.3 sec	
	12.2 m / 8.7-9.3 sec	
Raised or extended position	40 ft / 40-45 sec	
	12.2 m / 40-45 sec	
Drive speed, maximum (models with Hi-flotation tires	s)	
Stowed position	40 ft / 13.6-14.5 sec	
	12.2 m / 13.6-14.5 sec	
Raised or extended position	40 ft / 62-70 sec	
	12.2 m / 62-70 sec	
Gradeability - Refer to Operato	or's Manual	
Braking distance, maximum		
High range on paved surface	6 ft	
	1.83 m	

Function speeds	
Primary boom up, retracted (retracted -35° to 65°)	60 to 70 seconds
Primary boom down, retracted (retracted -35° to 65°)	75 to 85 seconds
Secondary boom up, retracted	38 to 48 seconds
Secondary boom down, retracted	38 to 48 seconds
Primary boom up, extended (-35° to 65°)	80 to 96 seconds
Primary boom down, extended (-35° to 65°)	80 to 96 seconds
Primary Boom extend	48 to 52 seconds
Primary Boom retract	38 to 42 seconds
Jib Boom up	23 to 33 seconds
Jib Boom down	21 to 31 seconds
Platform Rotate 160°	10 to 14 seconds
Turntable rotate, 360° boom fully retracted	114 to 126 seconds
Turntable rotate, 360° boom extended	200 to 240 seconds

Hydraulic Oil Specifications

Hydraulic Fluid Specifications

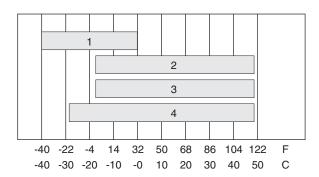
Genie specifications require hydraulic oils which are designed to give maximum protection to hydraulic systems, have the ability to perform over a wide temperature range, and the viscosity index should exceed 140. They should provide excellent antiwear, oxidation, corrosion inhibition, seal conditioning, and foam and aeration suppression properties.

Cleanliness level, minimum		15/13
Water content, maximum		200 ppm
Recommended Hye	draulic Fluid	
Hydraulic oil type Viscosity grade Viscosity index	Chevron Rando H	ID Premium MV 32 200

Optional Hydraulic Fluids

Biodegradable	Petro Canada Environ MV46
Fire resistant	UCON Hydrolube HP-5046
Mineral based	Shell Tellus S2 V 32 Shell Tellus S2 V 46
	Chevron 5606A

Note: Genie specifications require additional equipment and special installation instructions for the approved optional fluids. Consult the Genie Industries Service Department before use.


Optional fluids may not have the same hydraulic lifespan and may result in component damage.

Note: Extended machine operation can cause the hydraulic fluid temperature to increase beyond it's maximum allowable range. If the hydraulic fluid temperature consistently exceeds 200°F/90°C an optional oil cooler may be required.

Do not top off with incompatible hydraulic fluids. Hydraulic fluids may be incompatible due to the differences in base additive chemistry. When incompatible fluids are mixed, insoluble materials may form and deposit in the hydraulic system, plugging hydraulic lines, filters, control valves and may result in component damage.

Note: Do not operate the machine when the ambient air temperatue is consistently above 120°F /49°C.

Hydraulic Fluid Temperature Range

Ambient air temperature

- Chevron hydraulic oil 5606A
- Petro-Canada Environ MV 46
- UCON Hydrolube HP-5046D 3
- Chevron Rando HD premium oil MV

Chevron Rando HD Permium Oil MV Fluid Properties	
ISO Grade	32
Viscosity index	200
Kinematic Viscosity	
cSt @ 200°F / 100°C	7.5
cST @ 104°F / 40°C	33.5
Brookfield Viscosity	
cSt @ -4°F / -20°C	1040
cST @ -22°F / -30°C	3310
Flash point	375°F / 190°C
Pour point	-58°F / -50°C
Maximum continuous operating	<u> </u>
temperature	171°F / 77°C

Note: An hydraulic oil heating system is recommended when the ambient temperature is consistently below 0°F / -18°C.

Note: Do not operate the machine when the ambient temperatue is below $-20^{\circ}F/29^{\circ}C$ with Rando HD Premium MV.

Petro-Canada Environ MV 46 Fluid Properties	
ISO Grade	46
Viscosity index	154
Kinematic Viscosity	
cSt @ 200°F / 100°C	8
cST @ 104°F / 40°C	44.4
Flash point	482°F / 250°C
Pour point	-49°F / -45°C
Maximum continuous operating temperature	180°F / 82°C
temperature	100 1 7 02 0

Chevron 5606A Hyraulic Oil Fluid Properties	
ISO Grade	15
Viscosity index	300
Kinematic Viscosity	
cSt @ 200°F / 100°C	5.5
cST @ 104°F / 40°C	15
cST @ -40°F / -40°C	510
Flash point	180°F / 82°C
Pour point	-81°F / -63°C
Maximum continuous operating	
temperature	124°F / 51°C

Note: Use of Chevron 5606A hydraulic fluid, or equivalent, is required when the ambient temperature is consistently below 0°F / -18°C unless an oil heating system is used.

NOTICE

Continued use of Chevron 5606A hydraulic fluid, or equivalent, when ambient temperatures are consistently above 32°F / 0°C may result in component damage.

Note: Continued use of Chevron 5606A hydraulic fluid, or equivalent, when ambient temperatures are consistently above 32°F / 0°C may result in component damage.

UCON Hydrolube HP-5046 Fluid Properties	
ISO Grade	46
Viscosity index	192
Kinematic Viscosity	
cSt @ 149°F / 65°C	22
cST @ 104°F / 40°C	46
cST @ 0°F / -18°C	1300
Flash point	None
Pour point	-81°F / -63°C
Maximum continuous operating	
temperature	189°F / 87°C

Hydraulic Component Specifications

Drive pump	
Type: bi-directional variable displac	ement piston pump
Displacement	2.81 cu in 46 cc
Flow rate @ 2300 rpm	28 gpm 106 L/min
Drive pressure, maximum	3625 psi 250 bar
Charge pump	
Type:	gerotor
Displacement	0.85 cu in 13.9 cc
Flow rate @ 2300 rpm	9 gpm 34 L/min
Charge pressure @ 2300 rpm 320 psi	
Neutral position	22 bar
Function pumps	
Type: two-section	tandem gear pump
Displacement - Pump 1 (inner)	1.94 cu in 31.8 cc
Flow rate @ 2300 rpm	17 gpm 64.4 L/min
Displacement - Pump 2 (outer)	0.58 cu in 9.5 cc
Flow rate @ 2300 rpm	5 gpm 19 L/min

Auxiliary	pump	
Type:	two-section fixed displaceme	nt gear pump
Displacer	nent - Section 1 (inner)	0.159 cu in 2.61 cc
Flow rate	@ 2687 rpm	1.7 gpm 6.4 L/min
Displacer	nent - Section 2 (outer)	0.051 cu in 0.84 cc
Flow rate	@ 2687 rpm	0.3 gpm 1.1 L/min
Function	manifold	
	elief pressure d at ртеsт port)	3200 psi 220.6 bar
	ooom down relief pressure d at Ls port)	1300 psi 89.6 bar
	y boom down relief pressure d at Ls port)	2500 psi 172 bar
	y boom up relief pressure d at Ls port)	2500 psi 172 bar
	ooom extend relief pressure d at Ls port)	1300 psi 89.6 bar
	y boom extend relief pressure d at Ls port)	2600 psi 179 bar
Platform	manifold relief pressure	3000 psi 207 bar
Platform	manifold flow regulator	3 gpm 11.4 L/min
Oscillate	manifold	
Oscillate	relief pressure (item BE or CH)	800 psi 55.1 bar

Drive manifold	
Hot oil relief pressure	280 psi
	19.3 bar
Brakes	
Brake release pressure	215 psi
	14.8 bar
Drive motors	
Displacement per revolution,	variable 0.9 to 2.7 cu in
(2 speed motor)	14.7 to 45 cc
Hydraulic tank return filter	
High pressure filter	Beta 3 ≥ 200
High pressure filter	102 psi
bypass pressure	7 bar
Medium pressure filter	Beta 3 ≥ 200
Medium pressure filter	51 psi
bypass pressure	3.5 bar
Hydraulic tank return filter	10 micron with
	25 psi / 1.7 bar bypass

Manifold Component Specifications

Plug torque	
SAE No. 2	50 in-lbs / 6 Nm
SAE No. 4	14 ft-lbs / 18.9 Nm
SAE No. 6	23 ft-lbs / 31.2 Nm
SAE No. 8	36 ft-lbs / 48.8 Nm
SAE No. 10	62 ft-lbs / 84.1 Nm
SAE No. 12	84 ft-lbs / 113.9 Nm

Valve Coil Resistance Specifications

Note: The following coil resistance specifications are at an ambient temperature of 68°F / 20°C. As valve coil resistance is sensitive to changes in air temperature, the coil resistance will typically increase or decrease by 4% for each 18°F / 20°C that your air temperature increases or decreases from 68°F / 20°C.

Proportional solenoid valve, 12V DC (schematic items G, W and AB)	4.8 Ω
Proportional solenoid valve, 12V DC (schematic items R)	9 Ω
3 position 4 way solenoid valve, 12V DC (schematic items BA, BB, CA, CB, CP, CQ, GB, GP and GQ)	9 Ω
3 position 4 way solenoid valve, 10V DC (schematic items O and S)	6.3 Ω
2 position 2 way solenoid valve, 10V DC (schematic items J)	3.3 Ω
2 position 2 way solenoid valve, 10V DC (schematic items C and P)	6.3 Ω
2 position 3 way solenoid valve, 10V DC (schematic items H, V, X, Z, AA, EE and EF)	6.3 Ω
2 position 3 way solenoid valve, 12V DC (schematic items BC, BD, CE, CF, FB and FC)	9 Ω

Engine coolant	
Capacity	11.5 quarts
	10.9 liters
Coolant temperature switch	
Torque	8-18 ft-lbs
·	11-24 Nm
Temperature switch point	230° F
	112° C
Alternator	
Output	95A, 13.8V DC

Continental TME27 Engine

	O
Displacement	164 cu in 2.68 liters
Number of cylinders	4
Bore and stroke	3.58 x 4.06 inches 91 x 103.2 mm
Horsepower	59 @ 2500 rpm 44 kW @ 2500 rpm
Firing order	1 - 3 - 4 - 2
Compression ratio	8.2:1
Compression pressure Pressure (psi or bar) of the lowest least 75% of the highest cylinder.	cylinder must be at
Low idle - computer controlled Frequency	1600 rpm 53.33 Hz
High idle - computer controlled Frequency	2500 rpm 83.33 Hz
Valve clearance, warm	
Intake	0.014 in 0.36 mm
Exhaust	0.018 in 0.46 mm
Lubrication system	
Oil pressure	40 to 60 psi 2.75 to 4.14 bar
Oil capacity (including filter)	7 quarts 6.65 liters
Oil viscosity requirements	
Units ship with 15W-40. Extreme operating temperatures nalternative engine oils. For oil requencies of the control of the cont	uirements, refer to the

Fuel Requirement	
For fuel requirements, refer to the Manual on your machine.	engine Operator's
Electronic fuel pump	
Fuel pressure, static	55 psi 3.8 bar
Fuel flow rate	0.42 gpm 1.59 L/min
Batteries	
Туре	12V DC
Group	31
Quantity	2
Cold cranking ampere	1000A
Reserve capacity @ 25A rate	200 minutes
Alternator output	65A @ 13.8V DC
Fan belt deflection	¹ / ₂ inch 12 mm

Deutz TD2011L04i Engine

220.9 cu in
3.62 liters
4
3.78 x 4.92 inches
96 x 125 mm
74 / 55 kW
turbocharged
1 - 3 - 4 - 2
1500 rpm
383 Hz
2350 rpm
599 Hz
17.5:1

Pressure (psi or bar) of the lowest cylinder must be at least 75% of the highest cylinder.

centrifugal mechanical
0.012 in
0.3 mm
0.020 in
0.5 mm
40 to 60 psi
2.8 to 4.1 bar
12.8 quarts
12.1 liters

Oil viscosity requirements	
-22°F to 86°F / -30°C to 30°C	5W-30 (synthetic)
-4°F to 104°F / -20°C to 40°C	10W-40
Above 5°F / -15°C	15W-40

Units ship with 15W-40.

Extreme operating temperatures may require the use of alternative engine oils. For oil requirements, refer to the Engine Operator Handbook on your machine.

alternative engine oils. For oil requirement Engine Operator Handbook on your mac	•
Oil temperature switch	
Installation torque	8-18 ft-lbs 11-24 Nm
Oil temperature switch point	275°F 135°C
Oil pressure switch	
Installation torque	8-18 ft-lbs 11-24 Nm
Oil pressure switch point	22 psi 1.5 bar
Fuel injection system	
Injection pump make	Motorpal
Injection pump pressure, maximum 15,000 psi 1034 bar	
Injector opening pressure	3046 psi 210 bar
Fuel requirement	
For fuel requirements, refer to the engine Manual on your machine.	e Operator's
Starter motor	
Current draw, normal load	140-200A

Continuous improvement of our products is a Genie policy. Product specifications are subject to change without notice.

250-350 rpm

Cranking speed

Battery - Auxiliary power units	
Туре	6V DC
Quantity	2
AH rating	285AH
Reserve capacity @ 25A rate	745 minutes
Battery - Engine starting and co	ontrol system
Туре	12V DC, Group 31
Quantity	2
Cold cranking ampere	1000A
Reserve capacity @ 25A rate	200 minutes
Alternator output	80A @ 14V DC
Fan belt deflection	3/8 to 1/2 inch
	9 to 12 mm

Deutz TD 2.9 L4 Engine

Displacement	177 cu in
	2.9 liters
Number of cylinders	4
Bore and stroke	3.6 x 4.3 inches
	92 x 110 mm
Horsepower	74.2 @ 2600 rpm
	55.3 kW @ 2600 rpm
Firing order	1 - 3 - 4 - 2
Standby idle	1000 rpm
Lowidle	1500 rpm
High idle	2500 rpm
Compression ratio	17.4:1
Compression pressure	contact engine manufacturer
Governor	electronic
Lubrication system	
Oil pressure	40 to 60 psi
(@ 2000 rpm)	1.4 to 3 bar
Oil capacity	9.4 quarts
(including filter)	9 liters

Oil viscosity requirements	
-22° F to 86° F/ -30° C to 30° C 5W-30	
	(synthetic)
-4° F to 90° F / -20° C to 32° C 10W-40	
Above 23° F / -5° C	20W-50
Units ship with 15W-40. Extreme operating temperatures may requalternative engine oils. For oil requirement Engine Operator Handbook on your mach	ts, refer to the
Oil temperature switch	
Temperature switch point	257°F 125°C
Oil pressure switch	
Oil pressure switch point	20 psi 1.4 bar
Engine coolant	
Capacity	~11 quarts ~10.4 liters
Fuel injection system	
Injection pump make	Bosch
Injection pump pressure, maximum 15000 psi 1034 bar	
Injector opening pressure	3046 psi 210 bar
Fuel requirement	
For fuel requirements, refer to the engine Manual on your machine.	Operator's

Deutz TD 2.9 L4 Engine, continued

250A to 400A
0.72 in
18.5 mm
0.27 in
7 mm
12V DC
13 x 6 ¹³ / ₁₆ x 9 ³ / ₈ inches
33 x 17.3 x 23.8 cm
1
1000A
200 minutes
95A @ 14V DC
³ /8 to ¹ /2 inch
9 to 12 mm

Perkins 804D-33 Engine

Displacement	201 cu in 3.3 liters
	3.3 illers
Number of cylinders	4
Bore and stroke	3.70 x 4.72 inches 94 x 120 mm
Horsepower	63 @ 2600 rpm 47 kW @ 2600 rpm
Firing order	1 - 3 - 4 - 2
Compression ratio	22:1
Compression pressure Pressure (psi or bar) of lowest within 50 psi / 3.45 bar of high	
Low idle Frequency	1650 rpm 335.5 Hz
Low idle with generator Frequency	1400 rpm 284.7 Hz
High idle Frequency	2300 rpm 467.7 Hz
Governor	mechanical all speed
Valve clearance, cold	
Intake	0.0098 in 0.25 mm
Exhaust	0.0098 in 0.25 mm
Lubrication system	
Oil pressure @ 2000 rpm	40-60 psi 2.8-4.1 bar
Oil capacity (including filter)	10.6 quarts 10 liters

Oil viscosity i	requirements
-----------------	--------------

Units ship with 15W-40.

Extreme operating temperatures my require the use of alternative engine oils. For oil requirements, refer to the Engine Operator Handbook on your machine.

Injection system	
Injection pump make	Zexel 10641-3932
Injection pump pressure	1707 to 1849 psi 117.7 to 127.5 bar
Injector opening pressure	~2000 psi ~138 bar

Fuel Requirement

For fuel requirements, refer to the engine Operator's Manual on your machine.

uarts liters
V DC
31
2
000A
nutes
V DC
¹ /2 in 2 mm
V 1,

140A - 200A

0.7480 in

19 mm

0.5 in 12.7 mm

SPECIFICATIONS

Perkins 404F-22T Engine

	3
Displacement	134 cu in 2.2 liters
Number of cylinders	4
Bore and stroke	3.31 x 3.94 inches 84 x 100 mm
Horsepower	58 @ 2500 rpm 43.2 kW @ 2500 rpm
Firing order	1 - 3 - 4 - 2
Standby idle	1100 rpm
Lowidle	1500 rpm
High idle	2500 rpm
Compression ratio	23.3:1
Compression pressure	426 psi 29.4 bar
Pressure (psi) of lowest cylir be within 50 psi / 3.45 bar o	nder must
	nder must
be within 50 psi / 3.45 bar o	nder must f highest cylinder
be within 50 psi / 3.45 bar o	nder must f highest cylinder

Lubrication system	
Oil pressure (@ 2000 rpm)	40 to 60 psi 1.4 to 3 bar
Oil capacity (including filter)	9.4 - 11.2 quarts 8.9 - 10.6 liters
Oil viscosity requirements	
Below 86°F / 30°C	5W-20
-4°F to 104°F / -20°C to 40°C	10W-30
Above 14°F / -10°C	15W-40
Units ship with 15W-40; 5W-40 with Extreme operating temperatures malternative engine oils. For oil requience in Engine Operator Handbook on you Oil pressure sending unit	ay require the use of rements, refer to the
On pressure sending unit	
Oil pressure switch point	14.2 psi 1 bar
Fuel injection system	
Injection pump make	Zexel
Injection pressure	2133 psi 147 bar
Fuel requirement	
For fuel requirements, refer to the endanual on your machine.	engine Operator's
Alternator output	85A @ 12V DC
Fan belt deflection	

Starter motor

Brush length, new

Current draw, normal load

Brush length, minimum

Perkins 404F-22T Engine, continued

Battery	
Туре	12V DC
Size	13 x 6 ¹³ / ₁₆ x 9 ³ / ₈ inches 33 x 17.3 x 23.8 cm
Quantity	1
Cold cranking ampere	1000A
Reserve capacity @ 25A rate	200 minutes
Engine coolant	
Capacity	~14 quarts ~13.3 liters
Coolant temperature sending	unit
Temperature switch point	221° F 105° C

Machine Torque Specifications

Platform rotator	
1-8 center bolt, GR 5, dry	640 ft-lbs 867 Nm
³ / ₈ -16 bolts, GR 8 *(use blue thread locking compound)	35 ft-lbs* 47.5 Nm*
Turntable rotate assembly	
Rotate bearing mounting bolts, lubricated	180 ft-lbs 244 Nm
Rotate drive hub mounting bolts, lubricated	80 ft-lbs 108.4 Nm
Backlash plate mounting bolts, lubricated	280 ft-lbs 379 Nm
Drive motor and hubs	
Drive hub mounting bolts, lubricated *(use blue thread locking compound)	160 ft-lbs* 217 Nm
Drive hub mounting bolts, dry	210 ft-lbs 284 Nm
Drive motor mounting bolts, lubricated *(use blue thread locking compound)	80 ft-lbs* 108.4 Nm
Drive motor mounting bolts, dry	110 ft-lbs 149 Nm
Drive hub oil plug, O-ring seal	13 ft-lbs 18 Nm

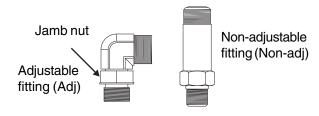
Hydraulic Hose and Fitting Torque Specifications

Your machine is equipped with Parker Seal-Lok® fittings and hose ends. Genie specifications require that fittings and hose ends be torqued to specification when they are removed and installed or when new hoses or fittings are installed.

Seal-Lok[™] Fittings

(hose end - ORFS)

T
Torque
10 ft-lbs / 13.6 Nm
30 ft-lbs / 40.7 Nm
40 ft-lbs / 54.2 Nm
60 ft-lbs / 81.3 Nm
85 ft-lbs / 115 Nm
110 ft-lbs / 150 Nm
140 ft-lbs / 190 Nm
180 ft-lbs / 245 Nm


JIC 37° Fittings (swivel nut or hose connection)

SAE Dash size	Thread Size	Flats
-4	⁷ /16-20	2
-6	9/16-18	1 1/4
-8	³ /4-16	1
-10	⁷ /8-14	1
-12	1 ¹ /16-12	1
-16	1 ⁵ /16-12	1
-20	1 5/8-12	1
-24	1 ⁷ /8-12	1

SAE O-ring Boss Port

(tube fitting - installed into Aluminum)
(all types)

SAE Dash size	Torque
-4	14 ft-lbs / 19 Nm
-6	23 ft-lbs / 31.2 Nm
-8	36 ft-lbs / 54.2 Nm
-10	62 ft-lbs / 84 Nm
-12	84 ft-lbs / 114 Nm
-16	125 ft-lbs / 169.5 Nm
-20	151 ft-lbs / 204.7 Nm
-24	184 ft-lbs / 249.5 Nm

SAE O-ring Boss Port

(tube fitting - installed into Steel)

ORFS / 37° (Adj) ORFS (Non-adj) 37° (Non-adj) ORFS (Adj / Non-adj)	15 ft-lbs / 20.3 Nm 26 ft-lbs / 35.3 Nm 22 ft-lbs / 30 Nm
37° (Non-adj) ORFS (Adj / Non-adj)	22 ft-lbs / 30 Nm
ORFS (Adj / Non-adj)	
` ,	
070 (4 1: / 1)	35 ft-lbs / 47.5 Nm
37° (Adj / Non-adj)	29 ft-lbs / 39.3 Nm
ORFS (Adj / Non-adj)	60 ft-lbs / 81.3 Nm
37° (Adj / Non-adj)	52 ft-lbs / 70.5 Nm
ORFS (Adj / Non-adj)	100 ft-lbs / 135.6 Nm
37° (Adj / Non-adj)	85 ft-lbs / 115.3 Nm
(All types)	135 ft-lbs / 183 Nm
(All types)	200 ft-lbs / 271.2 Nm
(All types)	250 ft-lbs / 339 Nm
(All types)	305 ft-lbs / 413.5 Nm
֡	ORFS (Adj / Non-adj) ORFS (Adj / Non-adj) ORFS (Adj / Non-adj) ORMONIA (All types) (All types)

Part No. 1258748

Torque Procedure

Seal-Lok™ fittings

1 Replace the O-ring. The O-ring must be replaced anytime the seal has been broken. The O-ring cannot be re-used if the fitting or hose end has been tightened beyond finger tight.

Note: The O-rings used in the Parker Seal Lok™ fittings and hose ends are custom-size O-rings. They are not standard SAE size O-rings. They are available in the O-ring field service kit (Genie part number 49612).

- 2 Lubricate the O-ring before installation.
- 3 Be sure that the face seal O-ring is seated and retained properly.
- 4 Position the tube and nut squarely on the face seal end of the fitting and tighten the nut finger tight.
- 5 Tighten the nut or fitting to the appropriate torque per given size as shown in the table.
- 6 Operate all machine functions and inspect the hoses and fittings and related components to confirm that there are no leaks.

JIC 37° fittings

- Align the tube flare (hex nut) against the nose of the fitting body (body hex fitting) and tighten the hex nut to the body hex fitting to hand-tight, approximately 30 in-lbs / 3.4 Nm.
- 2 Make a reference mark on one of the flats of the hex nut, and continue it on to the body hex fitting with a permanent ink marker. Refer to Figure 1.

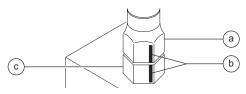


Figure 1

- a hex nut
- reference mark
- body hex fitting
- 3 Working clockwise on the body hex fitting, make a second mark with a permanent ink marker to indicate the proper tightening position. Refer to Figure 2.

Note: Use the *JIC 37° Fittings* table on the previous page to determine the correct number of flats for the proper tightening position.

Note: The marks indicate that the correct tightening positions have been determined. Use the second mark on the body hex fitting to properly tighten the joint after it has been loosened.

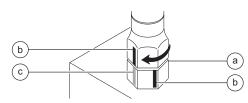


Figure 2

- a body hex fitting
- b reference mark
- second mark
- 4 Tighten the hex nut until the mark on the hex nut is aligned with the second mark on the body hex fitting.
- 5 Operate all machine functions and inspect the hoses and fittings and related components to confirm that there are no leaks.

							ENE										
	1		is char				guide d	nly un							Strene	ath	
SIZE	ZE THREAD		Grade 5 😭						Grade 8 🚓					A574 High Strength Black Oxide Bolts			
			LU	JBED	\Box	DRY			LUBED			Υ		LUBED			
			in-lbs	Nn	_	-lbs	Nm in-li			_	in-lbs Nm		in-lbs		Nm		
1/4		20	80	9		100	11.3	110	12		140	15.8	_	30	_	.7	
	28		90 10.1				13.5 120		13.5		160 18		140		15.8		
			LUBED		DRY				UBED		DRY				BED		
	+	18	ft-lbs 13	17.		-lbs 17	Nm 23	ft-lbs 18	24 24		t-lbs 25	Nm 33.9	_	- Ibs 21		m 3.4	
5/16		24	14	19	_	19	25.7	20	27		27	36.6	_	24		2.5	
3/8	_	16		23 31.2				42 33		.7	44	59.6	_	38		51.5	
3/0		24		26 35.2				47.4 37		50.1		49 66.4		43		58.3	
7/16		14	37 50.1				66.4 50			67.8 81.3		70 94.7		61		82.7	
		20 13	41 55.5 57 77.3				74.5 60 101.6 80					80 108.4 110 149		68 93		92.1 126	
1/2	2 20		64 86.				115 90					120 162		105		142	
9/16		12	80 108		.4 110		149 120		162		150 203		130		176		
3710		18	90 12				162 130			176 217		170 230		140		189	
5/8		11 18		110 149 130 176				203 160 230 180		4	210 284 240 325		180		244 271		
014		10	200 271				366			9	380	515	200 320		433		
3/4	16		220 298				406			20	420	569	350		474		
7/8		9		320 433				3 450			610	827	510		691		
	14		350	47			637 867	500	67		670	908	560		759		
1	8 12		530	480 650 530 718				680 750	92		910 990	1233	770 840		1044 1139		
4.10	7		590					962 750 1071 970			1290	1749	1090		1477		
1 1/8		12		670 908		890		1206 1080			1440	1952	1220		1654		
1 1/4	7			840 113				1518 1360		44 1820		2467	1530		2074		
	+-	12		930 1260 1460 1979				1681 1510 2643 2370		2047 20 3213 31				1700 2670		2304 3620	
1 1/2		6 12	1640 222				2969 2670					3160 4284 3560 4826		3000		4067	
METRIC FASTENER TORQUE CHART																	
This chart is to be used as a guide only unless noted elsewhere in this manual •																	
Size	Clas		s 4.6 (4.6)		Class 8.8			®.® CI		Clas	ass 10.9 (10.9)		Class 12.9 (2.9)				
(mm)	LUBED		DRY		LUBED		DRY		LUBED		DRY		LUBED		DRY		
	in-lbs	Nm	in-lbs	Nm	in-lbs	Nm	in-lbs	Nm	in-lbs	Nm	in-lbs	Nm	in-lbs	Nm	in-lbs	Nm	
<u>5</u>	16 19	1.8 3.05	21 36	2.4	41	4.63	54	6.18	58	6.63	78	8.84	68	7.75 13.2	91 155	10.3	
7		5.05	60	4.07 6.83	69 116	7.87	93 155	10.5	100	11.3	132	15 25.2	116	22.1	260	17.6 29.4	
					ft-lbs Nm						DRY ft-lbs Nm						
8		7.41	7.2	9.88		19.1		25.5	20.1	27.3	26.9		23.6			42.6	
10		14.7	14.4	19.6	27.9		37.2	50.5	39.9	54.1	53.2	72.2	46.7	63.3	62.3		
12	18.9	25.6	25.1	34.1	48.6	66	64.9	88	69.7	94.5	92.2	125	81	110	108	147	
14	30.1 46.9	40.8 63.6	40 62.5	54.3 84.8	77.4 125	105 170	103 166	140 226	110	150 235	230	200 313	129 202	175 274	172 269	234 365	
18	64.5	87.5	86.2	117	171	233	229	311	238	323	317	430	278	377	371	503	
20	91	124	121	165	243	330	325	441	337	458	450	610	394	535	525	713	
22	124	169	166	225	331	450	442	600	458	622	612	830	536	727	715	970	
24	157	214	210	285	420	570	562	762	583	791	778	1055	682	925	909	1233	

Scheduled Maintenance Procedures

Observe and Obev:

- ☑ Maintenance inspections shall be completed by a person trained and qualified on the maintenance of this machine.
- ☑ Scheduled maintenance inspections shall be completed daily, quarterly, six months, annually and every two years as specified on the Maintenance Inspection Report.

AWARNING Failure to perform each procedure as presented and scheduled could result in death, serious injury or substantial machine damage.

- ☑ Immediately tag and remove from service a damaged or malfunctioning machine.
- ☑ Repair any machine damage or malfunction before operating machine.
- ☑ Machines that have been out of service for a period more than three months must complete the quarterly inspection.
- ☑ Unless otherwise specified, perform each procedure with the machine in the following configuration:
 - · Machine parked on a firm, level surface
 - · Boom in the stowed position
 - · Turntable rotated with the boom between the circle-end (yellow arrow) wheels
 - · Turntable secured with the turntable rotation lock pin
 - · Key switch in the off position with the key removed
 - · Wheels chocked
 - · All external AC power supply disconnected from the machine

About This Section

This section contains detailed procedures for each scheduled maintenance inspection.

Each procedure includes a description, safety warnings and step-by-step instructions.

Symbols Legend

Safety alert symbol—used to alert personnel to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

Used to indicate the presence of an imminently hazardous situation which, if not avoided, will result in death or serious injury.

AWARNING

Used to indicate the presence of a potentially hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

Safety alert symbol—used to indicate the presence of a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

Used to indicate the presence of a potentially hazardous situation which, if not avoided, may result in property damage.

- Indicates that a specific result is expected after performing a series of steps.
- Indicates that an incorrect result has occurred after performing a series of steps.

SCHEDULED MAINTENANCE PROCEDURES

Maintenance Symbols Legend

Note: The following symbols have been used in this manual to help communicate the intent of the instructions. When one or more of the symbols appear at the beginning of a maintenance procedure, it conveys the meaning below.

Indicates that tools will be required to perform this procedure.

Indicates that new parts will be required to perform this procedure.

Indicates that a cold engine will be required to perform this procedure.

Indicates that a warm engine will be required to perform this procedure.

Indicates that dealer service is required to perform this procedure.

Pre-delivery Preparation Report

The pre-delivery preparation report contains checklists for each type of scheduled inspection.

Make copies of the *Pre-delivery Preparation* report to use for each inspection. Store completed forms as required.

Maintenance Schedule

There are five types of maintenance inspections that must be performed according to a schedule—daily, quarterly, six months, annual, and two years. The Scheduled Maintenance Procedures Section and the Maintenance Inspection Report have been divided into five subsections—A, B, C, D and E. Use the following chart to determine which group(s) of procedures are required to perform a scheduled inspection.

Inspection	Checklist
Daily or every 8 hours	A
Quarterly or every 250 hours	A + B
Six months or every 500 hours	A + B + C
Annual or every 1000 hours	A + B + C + D
Two years or every 2000 hours	A + B + C + D + E

Maintenance Inspection Report

The maintenance inspection report contains checklists for each type of scheduled inspection.

Make copies of the *Maintenance Inspection Report* to use for each inspection. Maintain completed forms for a minimum of 4 years or in compliance with employer, jobsite and governmental regulations and requirements.

This page intentionally left blank.

Pre-Delivery Preparation

Fundamentals

It is the responsibility of the dealer to perform the Pre-delivery Preparation.

The Pre-delivery Preparation is performed prior to each delivery. The inspection is designed to discover if anything is apparently wrong with a machine before it is put into service.

A damaged or modified machine must never be used. If damage or any variation from factory delivered condition is discovered, the machine must be tagged and removed from service.

Repairs to the machine may only be made by a qualified service technician, according to the manufacturer's specifications.

Scheduled maintenance inspections shall be performed by qualified service technicians, according to the manufacturer's specifications and the requirements listed in the responsibilities manual.

Instructions

Use the operator's manual on your machine.

The Pre-delivery Preparation consists of completing the Pre-operation Inspection, the Maintenance items and the Function Tests.

Use this form to record the results. Place a check in the appropriate box after each part is completed. Follow the instructions in the operator's manual.

If any inspection receives an N, remove the machine from service, repair and re-inspect it. After repair, place a check in the R box.

Legend

Y = yes, completed

N = no, unable to complete

R = repaired

Inspector company

Comments

Pre-Delivery Preparation	Υ	N	R
Pre-operation inspection completed			
Maintenance items completed			
Function tests completed			

Model	
Serial number	
Date	
Machine owner	
Inspected by (print)	
Inspector signature	
Inspector title	

Genie Industries USA 18340 NE 76th Street PO Box 97030 Redmond, WA 98073-9730 (425) 881-1800 Genie UK The Maltings, Wharf Road Grantham, Lincolnshire NG31- 6BH England (44) 1476-584333

Maintenance Inspection Report

Y N R

Model
Serial number
Date
Hour meter
Machine owner
Inspected by (print)
Inspector signature
Inspector title
Inspector company
Instructions Make copies of this report to use for each inspection.
· Select the appropriate checklist(s) for the type of inspection to be performed.
Daily or 8 hour Inspection:
Quarterly or 250 hour Inspection: A+B
Six Month or 500 hour Inspection: A+B+C
Annual or 1000 hours Inspection: A+B+C+D
2 Year or 2000 hour Inspection: A+B+C+D+E

n tests					
Perform after 40 hours:					
Service					
ery 50 hours:					
and Continental					
	•				
ry 100 hours:					
ry 100 hours:	Π				
'					
n bearing maintenance-					
maintenance- ental models					
maintenance- ental models er 150 hours:					
maintenance- ental models er 150 hours: e drive hub oil					
	eration ion In tests In maintenance- ental models In maintenance- models In indicators In tests In maintenance- models In indicators In tests In maintenance- models In indicators In tests In maintenance- In tests In maintenance- In tests In tests In maintenance- In tests I				

Checklist A

A-1 Inspect the manuals and decals

Chec	klist B	Υ	N	R
B-1	Batteries			
B-2	Electrical wiring			
B-3	Key switch			
B-4	Exhaust system			
B-5	Engine Air Filter			
B-6	Engine maintenance- Continental models			
B-7	Engine maintenance- Perkins models			
B-8	Lug nut torque			
B-9	Brake configuration			
B-10	Drive hub maintenance			
B-11	Ground control override			
B-12	Platform self leveling			
B-13	Engine idle select			
B-14	Fuel select operation			
B-15	Drive brakes			
B-16	Drive speed - stowed			
B-17	Drive speed - raised or extended			
B-18	Alarm and beacon			
B-19	Hydraulic oil analysis			
B-20	Safety envelope and circuits			
B-21	Primary boom self-leveling			
B-22	Primary boom angle sensor			
B-23	Fuel and hydraulic tank cap venting system			

3 - 5

- · Place a check in the appropriate box after each inspection procedure is completed.
- · Use the step-by-step procedures in this section to learn how to perform these inspections.
- · If any inspection receives an "N", tag and remove the machine from service, repair and re-inspect it. After repair, place a check in the "R" box.

Legend

Y = yes, acceptable

N = no, remove from service

R = repaired

Com	me	nts

Part No. 1258748 Z-80/60

Genîe.

MAINTENANCE INSPECTION REPORT

Model	Checklist C	Υ	N	R	Che
Serial number	C-1 Engine maintenance- Continental models				E-1 E-2
Date	C-2 Engine maintenance- Deutz models				 E-3
lour meter	C-3 Engine maintenance- Perkins models				Peri
Machine owner	C-4 Engine air filter			П	E-4
nspected by (print)	C-5 Adjust engine RPM			П	
Inspected by (print) Inspector signature	C-6 Grease platform overload (if equipped)				Perf E-5
Inspector title	C-7 Test the platform overload (if equipped)				
	Checklist D	Υ	N	R	
nspector company	D-1 Boom wear pads				
Instructions	D-2 Free-wheel configuration				
 Make copies of this report to use for each inspection. 	D-3 Turntable rotation bolts			П	
Select the appropriate checklist(s) for	D-4 Turntable bearing wea	-		П	
the type of inspection to be performed.	D-5 Drive hub oil		П	П	
Daily or 8 hour	D-6 Replace hydraulic filter elements				
Inspection: A Quarterly or 250 hour	D-7 Engine maintenance- Continental models				
Inspection: A+B Six Month or 500 hour	D-8 Engine maintenance- Deutz models				
Inspection: A+B+C Annual or 1000 hours	D-9 Engine maintenance- Perkins models				
Inspection: A+B+C+D 2 Year or 2000 hour	Comments				

Che	cklist E	Υ	Ν	R
E-1	Replace hydraulic oil			
E-2	Engine maintenance- Perkins models			
E-3	Engine maintenance- Deutz models			
Perf	orm every 3000 hours:			
E-4	Engine maintenance- Perkins models			
Perf	orm at various intervals	s :		
E-5	Cooling system- Perkins 404F models			

· Place a check in the appropriate box after each inspection procedure is completed.

A+B+C+D+E

Inspection:

- · Use the step-by-step procedures in this section to learn how to perform these inspections.
- · If any inspection receives an "N", tag and remove the machine from service, repair and re-inspect it. After repair, place a check in the "R" box.

Legend

Y = yes, acceptable

N = no, remove from service

R = repaired

C	OI	m	m	е	n	ts

Checklist A Procedures

A-1

Inspect the Manuals and Decals

Maintaining the operator's and safety manuals in good condition is essential to safe machine operation. Manuals are included with each machine and should be stored in the container provided in the platform. An illegible or missing manual will not provide safety and operational information necessary for a safe operating condition.

In addition, maintaining all of the safety and instructional decals in good condition is mandatory for safe machine operation. Decals alert operators and personnel to the many possible hazards associated with using this machine. They also provide users with operation and maintenance information. An illegible decal will fail to alert personnel of a procedure or hazard and could result in unsafe operating conditions.

- 1 Check to make sure that the operator's and safety manuals are present and complete in the storage container on the platform.
- 2 Examine the pages of each manual to be sure that they are legible and in good condition.
- Result: The operator's manual is appropriate for the machine and all manuals are legible and in good condition.
- Result: The operator's manual is not appropriate for the machine or all manuals are not in good condition or is illegible. Remove the machine from service until the manual is replaced.

- 3 Open the operator's manual to the decals inspection section. Carefully and thoroughly inspect all decals on the machine for legibility and damage.
- Result: The machine is equipped with all required decals, and all decals are legible and in good condition.
- Result: The machine is not equipped with all required decals, or one or more decals are illegible or in poor condition. Remove the machine from service until the decals are replaced.
- 4 Always return the manuals to the storage container after use.

Note: Contact your authorized Genie distributor or Genie Industries if replacement manuals or decals are needed.

A-2 Perform Pre-operation Inspection

Genie specifications require that this procedure be performed daily or every 8 hours, whichever comes first.

Completing a pre-operation inspection is essential to safe machine operation. The pre-operation inspection is a visual inspection performed by the operator prior to each work shift. The inspection is designed to discover if anything is apparently wrong with a machine before the operator performs the function tests. The pre-operation inspection also serves to determine if routine maintenance procedures are required.

Complete information to perform this procedure is available in the appropriate operator's manual. Refer to the Operator's Manual on your machine.

A-3 Perform Function Tests

Genie specifications require that this procedure be performed daily or every 8 hours, whichever comes first.

Completing the function tests is essential to safe machine operation. Function tests are designed to discover any malfunctions before the machine is put into service. A malfunctioning machine must never be used. If malfunctions are discovered, the machine must be tagged and removed from service.

Complete information to perform this procedure is available in the appropriate operator's manual. Refer to the Operator's Manual on your machine.

A-4 Perform Engine Maintenance Continental Models

Engine specifications require that this procedure be performed daily or every 8 hours, whichever comes first.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- · Oil level- check
- Coolant level- check
- Oil, fuel and coolant systems- check for leaks
- PCV system- check
- Air filter discharge valve- clean

Required maintenance procedures and additional engine information are available in the: Continental TME27 Owner's Manual (Continental part number WM10303).

Continental TME27 Owner's Manual Genie part number

111901

A-5 Perform Engine Maintenance Deutz Models

Engine specifications require that this procedure be performed daily or every 8 hours, whichever comes first.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- · Oil level- check
- Coolant level- check
- Oil, fuel and coolant systems- check for leaks
- Fuel pre-filter- drain water
- Air filter discharge valve- clean
- Fuel filter / separator- check/drain
- Exhaust system- inspect

Required maintenance procedures and additional engine information are available in the *Deutz 2011 Series Operation Manual* (Deutz part number 0312-3547) OR the *Deutz 2.9 L4 Series Operation Manual* (Deutz part number 0312-3893)

Deutz 2011 Series Operation Manual

Genie part number

139320

Deutz 2.9 L4 Series Operation Manual

Genie part number

1251561

A-6 Perform Engine Maintenance Perkins Models

Engine specifications require that this procedure be performed daily or every 8 hours, whichever comes first.

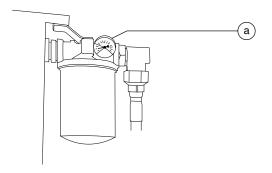
Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- · Oil level- check
- Coolant level- check
- Oil, fuel and coolant systems- check for leaks
- Fuel pre-filter- drain water
- Air filter discharge valve- clean

Perkins 800D Series Operation Manual (Perkins part number SEBU8324)OR the Perkins 404F Series Operation Manual (Perkins part number SEBU8609).

Perkins 800D Series Operation Manual Genie part number	111332
Perkins 404F Series Operation Manual Genie part number	1251562

A-7 Check the Hydraulic Filter Condition Indicators

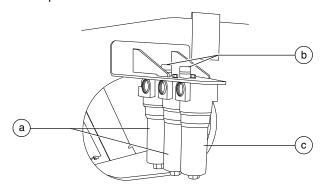

Maintaining the hydraulic filters in good condition is essential to good system performance and safe machine operation. The filter condition indicators will show when the hydraulic flow is bypassing a clogged filter. If the filters are not frequently checked and replaced, impurities will remain in the hydraulic system and cause component damage.

Note: There are four hydraulic filters on the machine: one tank return filter, one medium pressure filter and two high pressure filters. All the filters have condition indicators on them, except the medium pressure filter.

- 1 Start the engine from the ground controls.
- 2 Press and release the engine idle select button to change the engine rpm to high idle.

Tank return filter:

- 3 Open the ground control side turntable cover and inspect the filter condition indicator gauge.
- Result: The needle on the gauge should be operating in the green area. If the needle is in the red area, this indicates that the hydraulic filter is being bypassed and the filter needs to be replaced. See D-7, Replace the Hydraulic Filter Elements.



a filter condition indicator gauge

Medium and high pressure filters:

Note: The medium and high pressure filters are mounted to the engine side bulkhead.

4 Inspect the filter condition indicators.

- a high pressure filters
- b filter condition indicators
- c medium pressure filter
- Result: The filter condition indicators should be operating with the plungers in the green area.
- Result: If any of the indicators display the plunger in the red area, this indicates that a hydraulic filter is being bypassed and the filter needs to be replaced. See D-7, Replace the Hydraulic Filter Elements.

A-8 Perform 30 Day Service

The 30 day maintenance procedure is a one time sequence of procedures to be performed after the first 30 days or 40 hours of usage. After this interval, refer to the maintenance checklists for continued scheduled maintenance.

- 1 Perform the following maintenance procedures:
 - A-8 Grease the Turntable Rotation
 Bearing and Rotate Gear
 - B-7 Check the Tires, Wheels and Lug Nut Torque
 - B-9 Check the Drive Hub Oil Level and Fastener Torque
 - D-3 Check the Turntable Rotation Bearing Bolts
 - D-7 Replace the Hydraulic Filter Elements

A-9 Perform Engine Maintenance Continental Models

Engine specifications require that this procedure be performed every 50 hours or weekly.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- Fan belt tension- check
- Battery- check

Required maintenance procedures and additional engine information are available in the: Continental TME27 Owner's Manual (Continental part number WM10303).

Continental TME27 Owner's Manual Genie part number

111901

A-10 Grease the Turntable Rotation Bearing and Rotate Gear

Genie specifications require that this procedure be performed every 100 hours of operation. Perform this procedure more often if dusty conditions exist.

Frequent application of lubrication to the turntable bearing and rotate gear is essential to good machine performance and service life. Continued use of an improperly greased bearing and gear will result in component damage.

- Locate the grease fitting next to the ground control box.
- 2 Pump grease into the turntable rotation bearing. Rotate the turntable in increments of 4 to 5 inches / 10 to 13 cm at a time and repeat this step until the entire bearing has been greased.
- 3 Apply grease to each tooth of the drive gear, located under the turntable.

Grease Specification

Chevron Ultra-duty grease, EP NLGI 2 (lithium based) or equivalent

A-11 Perform Engine Maintenance Continental Models

Engine specifications require that this procedure be performed every 100 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

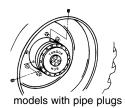
- Engine oil-replace
- Oil filter- replace

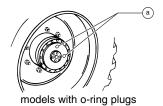
Required maintenance procedures and additional engine information are available in the: Continental TME27 Owner's Manual (Continental part number WM10303).

Continental TME27 Owner's Manual Genie part number

111901

A-12 Replace the Drive Hub Oil

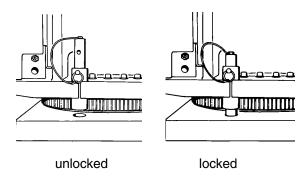



Manufacturer drive hub specifications require that this one-time procedure be performed after the first 150 hours.

Replacing the drive hub oil is essential for good machine performance and service life. Failure to replace the drive hub oil after the first 150 hours of use may cause the machine to perform poorly and continued use may cause component damage.

Drive Hubs:

- Select the drive hub to be serviced. Drive the machine until one of the two plugs is at the lowest point.
- 2 Remove both plugs and drain the oil into a suitable container.
- 3 Drive the machine until one plug is at the top and the other is at 90 degrees.


- 4 Fill the hub with oil from the top hole until the oil level is even with the bottom of the side hole. Apply pipe thread sealant to the plugs. Install the plugs.
- 5 **Models with pipe plugs:** Apply pipe thread sealant to the plugs and install the plugs.

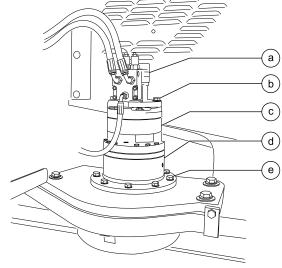
Models with O-ring plugs: Install the plugs into the drive hub.

6 Repeat steps 1 through 5 for the other drive hub.

Turntable Rotate Drive Hub:

1 Secure the turntable from rotating with the turntable rotation lock pin.

2 Remove the motor/brake mounting bolts, and then remove the motor and brake from the drive hub and set them to the side.



Component damage hazard. Hoses can be damaged if they are kinked or pinched.

3 Remove the drive hub mounting bolts, and use a lifting device to remove the drive hub from the machine.

Tip-over hazard. Failure to secure the turntable from rotating iwht the turntable rotation lock pin could cause the machine to tip over resulting in death or serious injury.

- a motor
- b motor/brake mounting bolts
- c brake
- d drive hub
- e drive hub mounting bolts
- 4 Remove the plug from the side of the drive hub. Drain the oil from the hub into a container of adequate capacity. Refer to Section 2, *Specifications*.
- 5 Install the drive hub. Torque the drive hub mounting bolts to specification. Refer to Section 2, *Specifications*.
- 6 Install the brake and motor onto the drive hub. Torque the motor/brake mounting bolts to specification. Refer to Section 2, *Specifications*.
- 7 Fill the hub with oil from the side hole until the oil level is even with the bottom of the hole. Apply pipe thread sealant to the plug. Install the plug.
- 8 Adjust turntable rotation gear backlash. Refer to Repair Procedure 9-1, *How to Adjust the Turntable Rotation Gear Backlash.*

A-13 Perform Engine Maintenance Perkins Models

Engine specifications require that this procedure be performed every 200 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

Required maintenance procedures and additional engine information are available in the *Perkins 804D-33 Operation and Maintenance Manual* (Perkins part number SEBU7853-00).

Perkins 804D-33 Operation and Maintenance Manual Genie part number

To access the engine:

1 Remove the engine tray retaining fastener located under the engine tray. Swing the engine tray out away from the machine and secure it from moving.

Crushing hazard. Failure to install the fastener into the engine tray anchor hole to secure the engine tray from moving could result in death or serious injury.

This page intentionally left blank.

Checklist B Procedures

B-1 Inspect the Batteries

Note: Genie specifications require that this procedure be performed every 250 hours or quarterly, whichever comes first.

Proper battery condition is essential to good engine performance and operational safety. Improper fluid levels or damaged cables and connections can result in engine component damage and hazardous conditions.

AWARNING Electrocution/burn hazard. Contact with hot or live circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

AWARNING Bodily injury hazard. Batteries contain acid. Avoid spilling or contacting battery acid. Neutralize battery acid spills with baking soda and water.

- 1 Put on protective clothing and eye wear.
- 2 Be sure that the battery cable connections are free of corrosion.

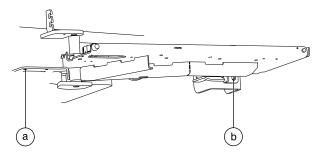
Note: Adding terminal protectors and a corrosion preventative sealant will help eliminate corrosion on the battery terminals and cables.

3 Be sure that the battery hold downs and cable connections are tight.

- 4 Be sure that the battery separator wire connections are tight.
- 5 Fully charge the batteries and allow them to rest at least 6 hours.
- 6 Remove the battery vent caps and check the specific gravity of each battery cell with a hydrometer. Note the results.
- 7 Check the ambient air temperature and adjust the specific gravity reading for each cell as follows:
- Add 0.004 to the reading of each cell for every 10° / 5.5° C above 80° F / 26.7° C.
- Subtract 0.004 from the reading of each cell for every 10° / 5.5° C below 80° F / 26.7° C.
- Result: All battery cells display an adjusted specific gravity of 1.277 or higher. The battery is fully charged. Proceed to step 11.
- Result: One or more battery cells display a specific gravity of 1.217 or below. Proceed to step 8.
- 8 Perform an equalizing charge, OR fully charge the batteries and allow them to rest at least 6 hours.
- Remove the battery vent caps and check the specific gravity of each battery cell with a hydrometer. Note the results.

- 10 Check the ambient air temperature and adjust the specific gravity reading for each cell as follows:
- Add 0.004 to the reading of each cell for every 10° / 5.5° C above 80° F / 26.7° C.
- Subtract 0.004 from the reading of each cell for every 10° / 5.5° C below 80° F / 26.7° C.
- Result: All battery cells display a specific gravity of 1.277 or greater. The battery is fully charged. Proceed to step 13.
- Result: The difference in specific gravity readings between cells is greater than 0.1 OR the specific gravity of one or more cells is less than 1.177. Replace the battery.
- 11 Check the battery acid level. If needed, replenish with distilled water to 1/8 inch / 3 mm below the bottom of the battery fill tube. Do not overfill.
- 12 Install the vent caps and neutralize any electrolyte that may have spilled.

B-2 Inspect the Electrical Wiring



Maintaining electrical wiring in good condition is essential to safe operation and good machine performance. Failure to find and replace burnt, chafed, corroded or pinched wires could result in unsafe operating conditions and may cause component damage.

AWARNING

Electrocution hazard. Contact with hot or live circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

- 1 Open the engine side turntable cover.
- 2 Remove the engine tray retaining fastener. Swing the engine tray out away from the machine.

- a engine tray anchor hole
- b engine tray retaining fastener
- 3 Locate the engine tray anchor hole at the pivot end of the engine tray.

4 Install the bolt that was just removed into the anchor hole to secure the engine tray from moving.

AWARNING

Crushing hazard. Failure to install the bolt into the engine tray to secure it from moving could result in death or serious injury.

- 5 Inspect the following areas for burnt, chafed, corroded, pinched and loose wires:
 - · Engine wiring harness
 - Battery area wiring
- 6 Open the ground controls side turntable cover.
- 7 Inspect the following areas for burnt, chafed, corroded, pinched and loose wires:
 - · Inside of the ground control box
 - · Hydraulic manifold wiring
 - · Hydraulic oil cooler wiring
- 8 Inspect for a liberal coating of dielectric grease at the following location:
 - · All wire harness connectors to the ground control box
 - · Hydraulic manifold wiring
- 9 Start the engine from the ground controls and raise the secondary boom above the turntable covers.
- 10 Inspect the turntable area for burnt, chafed and pinched cables.

- 11 Lower the secondary boom to the stowed position and turn the engine off.
- 12 Inspect the following areas for burnt, chafed, corroded, pinched and loose wires:
 - · Cable track on the boom
 - Cables on the boom and jib boom
 - · Jib boom/platform rotate manifold
 - · Inside of the platform control box
- 13 Remove the engine tray retaining fastener from the engine tray anchor hole at the pivot end of the engine tray.
- 14 Inspect for a liberal coating of dielectric grease at the following location:
 - · All wire harness connectors to the platform control box
 - · Hydraulic manifold wiring
- 15 Swing the engine tray in towards the machine.
- 16 Install the bolt that was just removed into the original hole to secure the engine tray.

AWARNING Crushing hazard. Failure to install the bolt into the engine tray to secure it from moving could result in death or serious injury.

B-3 Test the Key Switch

Proper key switch action and response is essential to safe machine operation. The machine can be operated from the ground or platform controls and the activation of one or the other is accomplished with the key switch. Failure of the key switch to activate the appropriate control panel could cause a hazardous operating situation.

- 1 Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 2 Turn the key switch to ground control, start the engine and then turn the key switch to platform control.
- 3 Check all machine function from the **ground** controls.
- Result: All machine functions should not operate.
- 4 Turn the key switch to ground control.
- 5 Check all machine function from the **platform** controls.
- Result: All machine functions should not operate.
- 6 Turn the key switch to the off position.
- Result: The engine should stop and no functions should operate.

B-4 Check the Exhaust System

Maintaining the exhaust system is essential to good engine performance and service life.

Operating the engine with a damaged or leaking exhaust system can cause component damage and unsafe operating conditions.

AWARNING

Bodily injury hazard. Do not inspect while the engine is running. Remove the key to secure from operation.

ACAUTION

Bodily injury hazard. Beware of hot engine components. Contact with hot engine components may cause severe burns.

 Remove the engine tray retaining fastener.
 Swing the engine tray out away from the machine.

- a engine tray anchor hole
- b engine tray retaining fastener

- 2 Locate the engine tray anchor hole at the pivot end of the engine tray.
- 3 Install the bolt that was just removed into the anchor hole to secure the engine tray from moving.

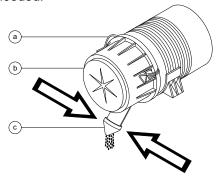
AWARNING

Crushing hazard. Failure to install the bolt into the engine tray to secure it from moving could result in death or serious injury.

- 4 Be sure that all nuts and bolts are tight.
- 5 Inspect all welds for cracks.
- 6 Inspect for exhaust leaks (i.e., carbon buildup) around seams and joints.
- 7 Remove the engine tray retaining fastener from the engine tray anchor hole at the pivot end of the engine tray.
- 8 Swing the engine tray in towards the machine.
- 9 Install the bolt that was just removed into the original hole to secure the engine tray.

ADANGER

Crushing hazard. Failure to install the bolt into the engine tray to secure it from moving could result in death or serious injury.


B-5 Inspect the Engine Air Filter

Genie requires that this procedure be performed every 250 hours or quarterly, whichever comes first. Perform this procedure more often if dusty conditions exist.

Note: Perform this procedure with the engine off.

Open the engine side cover. Empty the dust discharge valve by pressing together the sides of the discharge slot. Clean the discharge slot as needed.

- a retaining clamp
- b canister end cap
- c dust discharge valve
- 2 Disconnect the retaining clamp from the air cleaner canister.
- 3 Remove the filter element.
- 4 Clean the inside of the canister and the gasket with a damp cloth.
- 5 Inspect the air filter element. If needed, blow from the inside out using low pressure dry compressed air, or carefully tap out dust.
- 6 Install the filter element.
- 7 Install the air filter canister end cap and connect the end cap retaining clamp.

B-6 Perform Engine Maintenance Continental Models

3 - 22

Engine specifications require that this procedure be performed every 250 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- · Harness connections- check
- Cooling system- check

Required maintenance procedures and additional engine information are available in the: Continental TME27 Owner's Manual (Continental part number WM10303).

Continental TME27 Owner's Manual Genie part number

111901

B-7 Perform Engine Maintenance Perkins Models

Engine specifications require that this procedure be performed every 250 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

Alternator and Fan belts- inspect/adjust

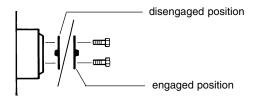
Perkins 800D Series Operation Manual (Perkins part number SEBU8324)OR the Perkins 404F Series Operation Manual (Perkins part number SEBU8609).

Perkins 800D Series Operation Manual Genie part number	111332
Perkins 404F Series Operation Manual	
Genie part number	1251562

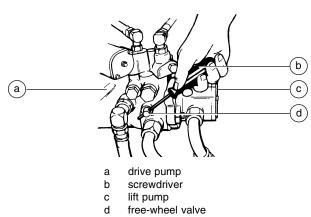
B-8 Check the Tires, Wheels and Lug Nut Torque

Maintaining the tires and wheels in good condition, including proper wheel fastener torque, is essential to safe operation and good performance. Tire and/or wheel failure could result in a machine tip-over. Component damage may also result if problems are not discovered and repaired in a timely fashion.

Note: The tires on this machine are foam filled and do not need air added to them with the exception of High Flotation tires.


- 1 Check all tire treads and sidewalls for cuts, cracks, punctures and unusual wear.
- 2 Check each wheel for damage, bends and cracked welds.
- 3 Check each lug nut for proper torque. Refer to Section 2, *Specifications*.

B-9 Confirm the Proper Brake Configuration


Proper brake configuration is essential to safe operation and good machine performance. Hydrostatic brakes and hydraulically-released, spring-applied individual wheel brakes can appear to operate normally when they are actually not fully operational.

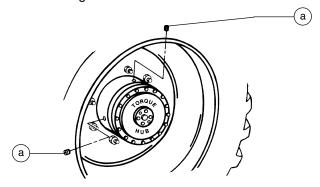
1 Check each drive hub disconnect cap to be sure it is in the engaged position.

2 Be sure the free-wheel valve on the drive pump is closed (clockwise).

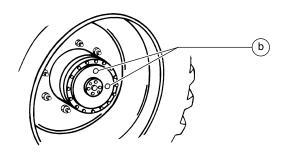
Note: The free-wheel valve is located on the drive pump.

Note: The free-wheel valve should always remain closed.

B-10 Check the Drive Hub Oil Level and Fastener Torque

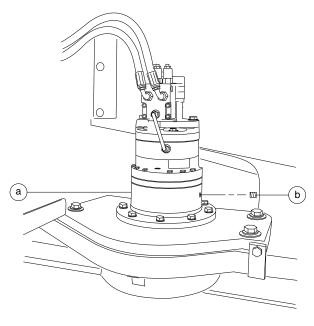


Failure to maintain proper drive hub oil levels may cause the machine to perform poorly and continued use may cause component damage.


Drive hubs:

1 Drive the machine to rotate the hub until one of the plugs is located on top and the other one is at 90 degrees.

a. models with pipe plugs


- 2 Remove the plug located at 90 degrees and check the oil level.
- Result: The oil level should be even with the bottom of the side plug hole.
- 3 If necessary, remove the top plug and add oil until the oil level is even with the bottom of the side plug hole.
- 4 **Models with pipe plugs:** Apply pipe thread sealant to the plugs and install the plugs.
 - **Models with O-ring plugs:** Install the plugs into the drive hub. Torque to Specification. Refer to Section 2, *Specifications*.
- 5 Check the torque of the drive hub mounting fasteners. Refer to Section 2, *Specifications*.
- 6 Repeat steps 1 through 4 for the other drive hubs.

b. models with o-ring plugs

Turntable rotate drive hub:

- 1 Remove the plug located on the side of the hub and check the oil level.
- Result: The oil level should be even with the bottom of the plug hole opening.

- a drive hub
- b plug
- 2 If necessary, add oil until the oil level is even with the bottom of the plug hole opening.
- 3 Apply pipe thread sealant to the plug, and install the plug in the drive hub.
- 6 Check the torque of the turntable rotate drive hub mounting fasteners. Refer to Section 2, *Specifications*.

B-11 Test the Ground Control Override

A properly functioning ground control override is essential to safe machine operation. The ground control override function is intended to allow ground personnel to operate the machine from the ground controls whether or not the Emergency Stop button on the platform controls is in the ON or OFF position. This function is particularly useful if the operator at the platform controls cannot return the boom to the stowed position.

- 1 Push in the platform red Emergency Stop button to the off position.
- 2 Start the engine from the ground controls.
- 3 At the ground controls, operate each boom function through a partial cycle.
- Result: All boom functions should operate.

B-12 Test the Platform Self-leveling

Automatic platform self-leveling throughout the full cycle of primary boom raising and lowering is essential for safe machine operation. The platform is maintained level by the communication between the platform level sensor and the turntable level sensor. If the platform becomes out of level, the computer at the ground controls will open the appropriate solenoid valve(s) at the platform manifold to maintain a level platform. A platform self-leveling failure creates an unsafe working condition for platform and ground personnel.

- 1 Start the engine from the ground controls.
- 2 Press and hold a function enable/speed select button and fully retract the primary boom.
- 3 Push one of the LCD screen buttons shown until platform angle is displayed.

4 Press and hold a function enable/speed select button and adjust the platform to zero degrees using the platform level up/down buttons.

- 5 Push and hold a function enable/speed select button and fully raise the primary boom while observing the platform angle shown on the LCD display.
- Result: The platform should remain level at all times to within ±2 degrees.

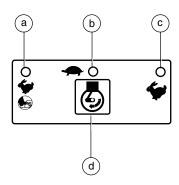
Note: If the platform becomes out of level, the tilt alarm will sound and the Platform Not Level Indicator will flash at the ground controls. The platform level up/down buttons will only work in the direction that will level the platform. Level the platform until the indicator light turns off.

- 6 Push and hold a function enable/speed select button and fully lower the primary boom.
- Result: The platform should remain level at all times to within ±2 degrees.

Note: If the platform becomes out of level, the tilt alarm will sound and the Platform Not Level Indicator will flash at the ground controls. The platform level up/down buttons will only work in the direction that will level the platform. Level the platform until the indicator light turns off.

B-13 Test the Engine Idle Select Operation

A properly operating engine idle select function is essential to good engine performance and safe machine operation. There are three settings.


Low idle (turtle symbol) allows the operator to control multiple boom and/or drive functions simultaneously, though at reduced speed. This setting maintains a consistent low idle.

High idle (rabbit symbol) allows the operator to control multiple boom and/or drive functions simultaneously. This setting maintains a consistent high idle.

Foot switch activated high idle (rabbit and foot switch symbols) should be used for normal machine operation. This selection activates high idle only when the foot switch is pressed down.

- 1 Turn the key switch to ground controls.
- 2 Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 3 Start the engine from the ground controls.
- 4 Push and release the rpm select button until high rpm is selected (rabbit symbol).
- Result: The engine should change to high idle.
- 5 Push and release the rpm select button until low rpm is selected (turtle symbol).
- Result: The engine should return to low idle.

- 6 Turn the key switch to platform controls.
- 7 At the platform controls, press the engine idle select button until high idle (rabbit symbol) is selected.
- Result: The engine should change to high idle.

- a foot switch activated high idle indicator light
- b low idle indicator light
- c high idle indicator light
- d engine rpm select button
- 8 Press the engine idle select button until low idle (turtle symbol) is selected.
- Result: The engine should change to low idle.
- 9 Press the engine idle select button until the foot switch activated high idle (rabbit and foot switch symbol) is selected.
- Result: The engine should not change to high idle.
- 10 Press down the foot switch.
- Result: The engine should change to high idle.

B-14 Test the Fuel Select Operation Gasoline/LPG Models

The ability to select and switch between gasoline and LPG fuels as needed is essential to safe machine operation. A fuel selection can be made whether the engine is running or not. Switching malfunctions and/or the failure of the engine to start and run properly in both fuel modes and through all idle speeds can indicate fuel system problems that could develop into a hazardous situation.

Note: Perform this test after checking the gasoline and LPG fuel levels, and warming the engine to normal operating temperature.

- 1 Turn the key switch to platform controls and pull out the red Emergency Stop buttons out to the on position at both the ground and platform controls.
- 2 Press the fuel select button to gasoline mode.
- 3 Start the engine from the platform controls and allow the engine to run at low idle.
- 4 At the platform controls, press the engine idle select button until foot switch activated high idle (rabbit and foot switch symbol) is selected.
- 5 Press down the foot switch to allow the engine to run at high idle.
- Result: The engine should start promptly and operate smoothly in low and high idle.

- 6 Release the foot switch and shut the engine off by pushing the red Emergency Stop button in to the off position.
- 7 Pull the red Emergency Stop button out to the on position at the platform controls.
- 8 Press the fuel select button to LPG mode.
- 9 Start the engine and allow it to run at low idle.
- 10 Press down the foot switch to allow the engine to run at high idle.
- Result: The engine should start promptly and operate smoothly in low and high idle.

Note: The engine may hesitate momentarily and then continue to run on the selected fuel if the fuel source is switched while the engine is running.

B-15 **Test the Drive Brakes**

Proper brake action is essential to safe machine operation. The drive brake function should operate smoothly, free of hesitation, jerking and unusual noise. Hydraulically-released individual wheel brakes can appear to operate normally when they are actually not fully operational.

AWARNING Collision hazard. Be sure that the machine is not in free-wheel or partial free-wheel configuration. See B-8, Confirm the Proper Brake Configuration.

Note: Select a test area that is firm, level and free of obstructions.

- 1 Mark a test line on the ground for reference.
- 2 Start the engine from the platform controls.
- 3 Press the engine rpm select button until the foot switch activated high idle (rabbit and foot switch symbol) is selected, then lower the boom into the stowed position.
- 4 Choose a point on the machine (i.e., contact patch of a tire) as a visual reference for use when crossing the test line.
- 5 Bring the machine to top drive speed before reaching the test line. Release the drive controller when your reference point on the machine crosses the test line.
- 6 Measure the distance between the test line and your machine reference point. Refer to Section 2, Specifications.

Note: The brakes must be able to hold the machine on any slope it is able to climb.

B-16 Test the Drive Speed -Stowed Position

Proper drive function movement is essential to safe machine operation. The drive function should respond quickly and smoothly to operator control. Drive performance should also be free of hesitation, jerking and unusual noise over the entire proportionally controlled speed range.

Note: Select a test area that is firm, level and free of obstructions.

Note: Perform this procedure with the boom in the stowed position.

- 1 Create start and finish lines by marking two lines on the ground 40 feet / 12.2 m apart.
- 2 Start the engine from the platform controls.
- 3 Press the engine rpm select button until the foot switch activated high idle (rabbit and foot switch symbol) is selected.
- 4 Choose a point on the machine; i.e., contact patch of a tire as a visual reference for use when crossing the start and finish lines.
- 5 Bring the machine to top drive speed before reaching the start line. Begin timing when your reference point on the machine crosses the start line.
- 6 Continue at full speed and note the time when the machine reference point crosses the finish line. Refer to Section 2, Specifications.

Part No. 1258748

CHECKLIST B PROCEDURES

B-17 Test the Drive Speed Raised or Extended Position

Proper drive function movement is essential to safe machine operation. The drive function should respond quickly and smoothly to operator control. Drive performance should also be free of hesitation, jerking and unusual noise over the entire proportionally controlled speed range.

Note: Select a test area that is firm, level and free of obstructions.

- 1 Create start and finish lines by marking two lines on the ground 40 feet / 12.2 m apart.
- 2 Start the engine from the platform controls.
- 3 Press the engine rpm select button until the foot switch activated high idle (rabbit and foot switch symbol) is selected.
- 4 Press down the foot switch and raise the boom until the engine switches to low idle.
- 5 Choose a point on the machine; i.e., contact patch of a tire as a visual reference for use when crossing the start and finish lines.
- 6 Bring the machine to top drive speed before reaching the start line. Begin timing when your reference point on the machine crosses the start line.

- 7 Continue at full speed and note the time when the machine reference point crosses the finish line. Refer to Section 2, *Specifications*.
- 8 Lower the boom to the stowed position.
- 9 Extend the boom 4 feet / 1.2 m.
- 10 Choose a point on the machine; i.e., contact patch of a tire, as a visual reference for use when crossing the start and finish lines.
- 11 Bring the machine to top drive speed before reaching the start line. Begin timing when your reference point on the machine crosses the start line.
- 12 Continue at top speed and note the time when the machine reference point crosses the finish line. Refer to Section 2, *Specifications*.

B-18 Test the Alarm and Optional Flashing Beacon

An alarm and optional flashing beacon are installed to alert operators and ground personnel of machine proximity and motion. There are four alarm option modes that can be activated based on user preference or requirement. Refer to Display Module in the Repair Section for information.

- 1 Turn the key switch to ground control and pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- Result: The alarm should sound twice. The flashing beacon (if equipped) should be on and flashing.

B-19 Perform Hydraulic Oil Analysis

Replacement or testing of the hydraulic oil is essential for good machine performance and service life. Dirty oil and a clogged suction strainer may cause the machine to perform poorly and continued use may cause component damage. Extremely dirty conditions may require oil changes to be performed more often.

Note: Before replacing the hydraulic oil, the oil may be tested by an oil distributor for specific levels of contamination to verify that changing the oil is necessary. If the hydraulic oil is not replaced at the two year inspection, test the oil quarterly. Replace the oil when it fails the test.

See E-1, Test or Replace the Hydraulic Oil.

B-20 Test the Safety Envelope and **Circuits**

Testing the machine safety envelope is critical to safe machine operation. If the boom is allowed to operate when a safety switch is not functioning correctly, the machine stability is compromised and may tip over. Refer to Section 6 for limit switch and angle sensor information.

Secondary Boom #1 Angle Safety Limit Switch, LSS2AS

- 1 Turn the key switch to ground control and pull out the red Emergency Stop buttons out to the on position at both the ground and platform controls.
- 2 Start the engine from the ground controls.
- 3 Simultaneously push the LCD screen buttons shown to activate status mode.

4 Push one of the LCD screen buttons shown until secondary boom length is displayed.

5 Fully raise the secondary boom and extend the secondary boom approximately 2 feet / 61 cm.

- 6 Remove the fasteners from the turntable riser cover at the platform end of the secondary boom. Remove the cover.
- 7 Locate the Deutsch connectors from the secondary safety retract switch (LSS1RS) near the chassis at the platform end of the secondary boom. The connection will be marked with yellow zip ties on the wire assembly. Disconnect the connectors.
- 8 Locate the Deutsch connectors from the secondary boom #1 retract operational limit switch (LSS1RO) at the end of the secondary boom. The connection will be marked with red zip ties on the wire assembly. Disconnect the connectors.
- 9 Install a wire jumper between pin 1 and pin 2 of the Deutsch connector on the wire harness removed in step 8.
- 10 Install a second wire jumper between pin 3 and pin 4 of the Deutsch connector on the wire harness.
- Result: The display should show = OFT.

- 11 Press and hold the high speed function enable button and lower the secondary boom.
- Result: The secondary boom should lower to 60° and the engine should stop.
- Result: If the engine does not stop at 60° and the secondary boom continues to lower, the secondary boom #2 angle safety limit switch (LSS2AS) is out of adjustment or the wiring circuit is faulty and will need to be replaced or repaired. Immediately remove the machine from service until repairs are made.

ADANGER

Bodily injury hazard. If the secondary boom lowers to less than 60° without stopping the engine, stop immediately and raise the secondary boom above 60°. Failure to raise the secondary boom could result in death or serious injury.

- 12 Remove the key from the main key switch, insert it into the service bypass/recovery key switch, turn the key to Service Bypass mode and raise the scondary boom above 60° using auxiliary power.
- 13 Remove the wire jumpers installed in steps 9 and 10 and connect the wire harness to LSS1RO removed in step 8.
- 14 Fully raise the secondary boom and extend the secondary boom approximately 1 foot / 30.5 cm.

- 15 Turn the service bypass/recovery key switch back to run, return the key to the main key switch and start the engine from the ground controls.
- 16 Re-connect the Deutsch connector from the secondary safety retract switch (LSS1RS) removed in step 7.

Secondary Boom #1 Retracted Safety Limit Switch, LSS1RS

17 Simultaneously push the LCD screen buttons shown to activate status mode.

18 Push one of the LCD screen buttons shown until secondary boom angle is displayed.

- 19 Raise the secondary boom until the display shows >=35 DEGREES.
- 20 Locate the Deutsch connectors from the secondary boom #2 angle safety limit switch (LSS2AS) on the inside of the turntable riser. The connection will be marked with purple zip ties on the wire assembly. Disconnect the connectors.
- 21 Locate the Deutsch connectors from the secondary boom #2 angle operational limit switch (LSS2AO) on the inside of the turntable riser. The connection will be marked with green zip ties on the wire assembly. Disconnect the connectors.

- 22 Install a wire jumper between pins 1 and 2 of the Deutsch connector on the wire harness removed in step 21.
- Result: The display should show AT 65 DEGREES.
- 23 Press and hold the low speed function enable button and extend the secondary boom.
- Result: The secondary boom should extend no more than 12 inches / 30.5 cm and stop. The engine should stop and the display will show P9B SAFETY FAULT and P11 SAFETY FAULT.
- Result: If the engine does not stop and the secondary boom continues to extend, the secondary boom #1 retracted safety limit switch (LSS1RS) is out of adjustment or the wiring circuit is faulty and will need to be replaced or repaired.

A DANGER

Bodily injury hazard. If the secondary boom continues to extend without stopping the engine, stop immediately and retract the secondary boom. Failure to retract the secondary boom could result in death or serious injury.

- 24 Remove the wire jumpers installed in step 22 and connect the wire harness to LSS2AO.
- 25 Re-connect the Deutsch connector from the secondary boom #2 angle safety limit switch (LSS2AS) removed in step 20.

B-21 Test the Primary Boom Self-leveling

Note: The primary boom self-leveling function is adjustable on machines with software revision 1.03 and lower. This function is not adjustable on machines with a software revision higher than 1.03. Refer to Repair Procedure 6-1, *How to Determine the Revision Level*.

Automatic primary boom self-leveling throughout the full cycle of secondary boom raising and lowering is essential for safe machine operation. The primary boom is maintained level by the communication between the platform level sensor and the turntable level sensor. If the platform becomes out of level, the computer at the ground controls will open the appropriate solenoid valve(s) at the function manifold to maintain a level primary boom.

- 1 Turn the key switch to ground control and pull out the red Emergency Stop buttons out to the on position at both the ground and platform controls.
- 2 Push one of the LCD screen buttons shown until primary boom angle is displayed.

3 Start the engine and level the platform until the displays shows 0 DEGREES.

- 4 Fully raise the secondary boom while watching the display at the ground controls. Stop when the secondary boom just begins to extend.
- Result: The primary boom should remain level at all times to within ±2 degrees.

Note: If the platform becomes out of level, the tilt alarm will sound and the platform not level indicator will turn on. Level the platform until the indicator light turns off.

B-22 Test the Primary Boom Angle Sensor

A properly functioning primary boom angle sensor (PBAS) is essential to safe machine operation. The primary boom angle sensor is used to limit the angle of the primary boom relative to the angle of the secondary boom and gravity. The ECM at the ground controls (TCON) monitors the position and angle of the primary boom using the signal from PBAS. The PBAS signal is used to control the ramping of the primary boom as well as velocity control, limiting the speed of the primary boom to 1.3 feet / 0.4 meters per second.

Note: Perform this procedure on a firm, level surface.

- 1 Turn the key switch to ground control and pull out the red Emergency Stop buttons out to the on position at both the ground and platform controls.
- 2 Push one of the LCD screen buttons shown until primary boom angle is displayed.

- 3 Start the engine from the ground controls.
- 4 Raise the primary boom. The display will begin showing a boom angle of 40°.
- 5 Continue raising the primary boom until the display shows 65°.
- Result: The primary boom should stop.
- Result: The primary boom does not stop. Immediately release the function enable button and lower the boom. Calibrate the limit switch. Refer to Repair Procedure 4-7 How to Calibrate the Primary Boom Limit Switch.

ADANGER

3 - 36

Tip-over hazard. If the boom does not stop at 65°, immediately release the function enable button and lower the primary boom. Failure to lower the boom could cause the machine to tip over resulting in death or serious injury.

B-23

Inspect the Fuel and Hydraulic Tank Cap Venting Systems

Genie requires that this procedure be performed every 250 hours or quarterly, whichever comes first. Perform this procedure more often if dusty conditions exist.

Free-breathing fuel and hydraulic tank caps are essential for good machine performance and service life. A dirty or clogged tank cap may cause the machine to perform poorly and continued use may cause component damage. Extremely dirty conditions may require that the caps be inspected more often.

ADANGER

Explosion and fire hazard. Engine fuels are combustible. Perform this procedure in an open, well-ventilated area away from heaters, sparks, flames and lighted tobacco. Always have an approved fire extinguisher within easy reach.

Note: Perform this procedure with the engine off.

1 Remove the cap from the fuel tank.

- 2 Check for proper venting.
- Result: Air passes through the fuel tank cap. Proceed to step 4.
- Result: If air does not pass through the cap, clean or replace the cap. Proceed to step 3.

Note: When checking for positive tank cap venting, air should pass freely through the cap.

- 3 Using a mild solvent, carefully wash the cap venting system. Dry using low pressure compressed air. Repeat this procedure beginning with step 2.
- 4 Install the fuel tank cap onto the fuel tank.
- 5 Remove the breather cap from the hydraulic tank.
- 6 Check for proper venting.
- Result: Air passes through the hydraulic tank cap. Proceed to step 8.
- Result: If air does not pass through the cap, clean or replace the cap. Proceed to step 7.

Note: When checking for positive tank cap venting, air should pass freely through the cap.

- 7 Using a mild solvent, carefully wash the cap venting system. Dry using low pressure compressed air. Repeat this procedure beginning with step 6.
- 8 Install the breather cap onto the hydraulic tank.

Checklist C Procedures

C-1 Perform Engine Maintenance Continental Models

Engine specifications require that this procedure be performed every 500 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- · Valve tappet clearance- adjust
- Fuel pump-check
- Fuel filter- replace
- PCV valve- check

Required maintenance procedures and additional engine information are available in the: Continental TME27 Owner's Manual (Continental part number WM10303).

Continental TME27 Owner's Manual

Genie part number

111901

C-2 Perform Engine Maintenance Deutz Models

Engine specifications require that this procedure be performed every 500 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- Engine oil-replace
- Oil filter- replace
- Primary fuel filter- replace
- V-belts- check
- Intake air pipes- check
- · Cooling system- check

Required maintenance procedures and additional engine information are available in the *Deutz 2011 Series Operation Manual* (Deutz part number 0312-3547) OR the *Deutz 2.9 L4 Series Operation Manual* (Deutz part number 0312-3893)

Deutz 2011 Series Operation Manual Genie part number	139320
Deutz 2.9 L4 Series Operation Manual Genie part number	1251561

C-3 Perform Engine Maintenance Perkins Models

Engine specifications require that this procedure be performed every 500 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- Engine oil-replace
- Oil filter- replace
- Fuel filter- replace
- Secondary Fuel filter- replace
- Fan clearance- check
- Cooling system- test/add
- Hoses and clamps-inspect/replace
- Radiator-clean

Genie part number

Required maintenance procedures and additional engine information are available in the: Perkins 800D Series Operation Manual (Perkins part number SEBU8324) OR the Perkins 404F Series Operation Manual (Perkins part number SEBU8609).

111332

C-4 Replace the Engine Air Filter Element

Engine specifications require that this procedure be performed every 500 hours or six months, whichever comes first.

Maintaining the engine air filter in good condition is essential to good engine performance and service life. Failure to perform this procedure can lead to poor engine performance and component damage.

Note: Perform this procedure with the engine off.

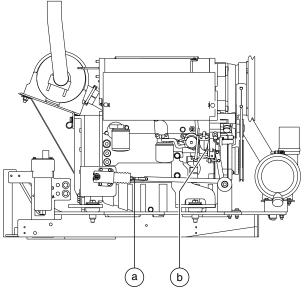
- Release the latches on the air cleaner cap.
 Remove the end cap from the air cleaner canister.
- 2 Remove the filter element.
- 3 Use a damp cloth to wipe the filter sealing surface and the inside of the outlet tube. Make sure that all contaminant is removed before the filter is inserted.
- 4 Check new filter element gasket for damage before installing.
- 5 Install the new filter element.
- 6 Install the end cap on the canister and secure.

Note: Be sure the discharge slot is pointing down.

1251562

C-5 Check and Adjust the Engine RPM

Maintaining the engine rpm at the proper setting for both low and high idle is essential to good engine performance and service life. The machine will not operate properly if the rpm is incorrect and continued use may cause component damage.


Not applicable to these models:

Continental TME27 Deutz TD 2.9 L4 Models Perkins 404F-22T Models

Note: The engine rpm is controlled by the ECM and can only be adjusted by re-programming the ECM. If rpm adjustment or service is required, please contact Genie Product Support.

Deutz TD2011L04i models:

1 Connect a tachometer to the engine. Start the engine from the ground controls and check the rpm. Refer to Section 2, *Specifications*.

Deutz models

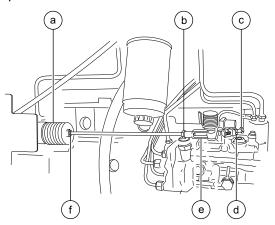
- a high idle adjustment
- b low idle adjustment

Skip to step 4 if the low idle rpm is correct.

- 2 Loosen the locknut on the low idle adjustment screw.
- 3 Adjust the low idle adjustment screw until low idle meets specification. Tighten the locknut.
- 4 Push and hold the function enable/high speed button. Note the engine rpm on the display. Refer to Section 2, *Specifications*.

If the high idle is correct, disregard adjustment step 5.

5 Loosen the yoke lock nut. Turn the high idle adjustment nut and solenoid boot counterclockwise to increase the rpm or clockwise to decrease the rpm. Tighten the yoke lock nut and recheck the rpm.


Note: Be sure the solenoid fully retracts when activating high idle.

Perkins 804D models:

1 Connect a tachometer to the engine. Start the engine from the ground controls and check the rpm. Refer to Section 2, *Specifications*.

Skip to step 3 if the low idle rpm is correct.

2 Loosen the low idle lock nut. Turn the low idle adjustment screw clockwise to increase the rpm or counterclockwise to decrease the rpm. Tighten the low idle lock nut and confirm the rpm.

Perkins models

- a solenoid boot
- b yoke lock nut
- c low idle adjustment screw
- d low idle lock nut
- e yoke
- f high idle adjustment nut

3 Move the function enable/rpm select toggle switch to the high idle (rabbit symbol) position. Refer to Section 2, *Specifications*.

If high idle rpm is correct, disregard adjustment step 4.

4 Loosen the yoke lock nut. Turn the high idle adjustment nut and solenoid boot counterclockwise to increase the rpm or clockwise to decrease the rpm. Tighten the yoke lock nut and recheck the rpm.

Note: Be sure the solenoid fully retracts when activating high idle.

C-6 Grease the Platform Overload Mechanism (if equipped)

Genie specifications require that this procedure be performed every 500 hours or 6 months, whichever comes first. Perform this procedure more often if dusty conditions exist.

Application of lubrication to the platform overload mechanism is essential to safe machine operation. Continued use of an improperly greased platform overload mechanism could result in the system not sensing an overloaded platform condition and will result in component damage.

- 1 Locate the grease fittings on each pivot pin of the platform overload assembly.
- 2 Thoroughly pump grease into each grease fitting using a multi-purpose grease.

Grease Specification

Chevron Ultra-duty grease, EP NLGI 2 (lithium based) or equivalent

C-7 Test the Platform Overload System (if equipped)

Genie specifications require that this procedure be performed every 500 hours or 6 months, whichever comes first.

Testing the platform overload system regularly is essential to safe machine operation. Continued use of an improperly operating platform overload system could result in the system not sensing an overloaded platform condition. Machine stability could be compromised resulting in the machine tipping over.

Note: Perform this procedure with the machine on a firm, level surface.

- 1 Turn the key switch to platform control. Start the engine and level the platform.
- 2 Determine the maximum platform capacity. Refer to the machine serial plate.
- 3 Remove all weight, tools and accessories from the platform.

Note: Failure to remove all weight, tools and accessories from the platform will result in an inaccurate test.

- 4 Using a suitable lifting device, place a test weight equal to that of the available capacity one of the locations shown. Refer to Illustration 1.
- Result: The platform overload indicator lights should be off at both the ground and platform controls and the alarm should not sound.
- Result: The platform overload indicator lights are on and the alarm is sounding. Calibrate the platform overload system. Refer to Repair Procedure 2-4, How to Calibrate the Platform Overload System (if equipped).

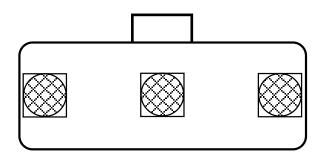


Illustration 1

- 5 Carefully move the test weight to each remaining location. Refer to Illustration 1.
- Result: The platform overload indicator lights should be off at both the ground and platform controls and the alarm should not sound.
- Result: The platform overload indicator lights are on and the alarm is sounding. Calibrate the platform overload system. Refer to Repair Procedure 2-4, How to Calibrate the Platform Overload System (if equipped).

- 6 Using a suitable lifting device, place an additional 50 lbs / 23 kg of weight onto the platform.
- Result: The alarm should sound. The platform overload indicator light should be flashing at the platform controls and "PLATFORM OVERLOAD" should be displayed on the LCD screen at the ground controls.
- Result: The alarm is not sounding OR the platform overload indicator light is not flashing OR "PLATFORM OVERLOAD" is not displayed on the LCD screen at the ground controls. Calibrate the platform overload system. Refer to Repair Procedure 2-4, How to Calibrate the Platform Overload System (if equipped).

Note: There may be a 2 second delay before the overload indicator lights flash and the alarm sounds.

- 7 Carefully move the test weights to each remaining location on the platform. Refer to Illustration 1.
- Result: The alarm should sound. The platform overload indicator lights should be flashing at both the ground and platform controls.
- Result: The alarm does not sound and the platform overload indicator lights are not flashing. Calibrate the platform overload system. Refer to Repair Procedure 2-4, How to Calibrate the Platform Overload System (if equipped).

Note: There may be a 2 second delay before the overload indicator lights flash and the alarm sounds.

- 8 Test all machine functions from the platform controls.
- Result: All platform control functions should not operate.

- 9 Turn the key switch to ground control.
- 10 Test all machine functions from the ground controls.
- Result: All ground control functions should not operate.
- 11 Press and hold the auxiliary power button.

Note: The engine must be shut off to access auxiliary power.

- 12 Using auxiliary power, test all machine functions from the ground controls.
- Result: All ground control functions should operate except extend.
- 13 Using a suitable lifting device, lift the additional test weight from the platform.
- Result: The platform overload indicator lights should turn off at both the ground and platform controls and the alarm should not sound.

Note: There may be an 2 second delay before the overload indicator lights and alarm turn off.

- 14 Start the engine and test all machine functions from the ground controls.
- Result: All ground control functions should operate normally.
- 15 Turn the key switch to platform control.
- 16 Test all machine functions from the platform controls.
- Result: All platform control functions should operate.

Note: If the platform overload system is not operating properly, Refer to 2-4, *How to Calibrate the Platform Overload System (if equipped).*

17 Using a suitable lifting device, remove the remaining test weights from the platform.

Checklist D Procedures

D-1 Check the Boom Wear Pads

Maintaining the boom wear pads in good condition is essential to safe machine operation. Wear pads are placed on boom tube surfaces to provide a low friction, replaceable wear pad between moving parts. Improperly shimmed wear pads or continued use of extremely worn wear pads may result in component damage and unsafe operating conditions.

Boom wear pad specifications	Minimum
Primary Boom	
Top, bottom and side wear pads	5/8 inch
	15.9 mm
Primary Extension Boom	
Top wear pads	5/8 inch
	15.9 mm
Side wear pads	¹ / ₂ inch
	12.7 mm
Secondary Boom	
Top wear pads	¹ / ₂ inch
	12.7 mm
Side and bottom wear pads	⁷ /8 inch
	22.2 mm
Secondary Extension Boom	
Top wear pads	5/8 inch
•	15.9 mm
Side wear pads	1/2 inch
·	12.7 mm

- 1 Start the engine from the ground controls.
- 2 Raise the end of the boom to a comfortable working height (chest high), then extend the boom 1 foot / 30 cm.
- 3 Measure each wear pad.
- Result: Replace the wear pad if it is less than specification. If the wear pad is not less than specification, shim as necessary to obtain minimum clearance with no binding.

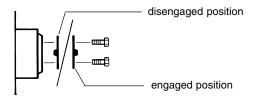
Note: The minimum shim clearance for the primary boom wear pads is .030 inch / .76 mm and the maximum allowable shim clearance is .090 inch / 2.29 mm. The minimum shim clearance for the secondary boom wear pads is .030 inch / .76 mm and the maximum allowable shim clearance is .125 inch / 3.2 mm.

Note: If the wear pads are still within specification, refer to refer to Repair Procedure 4-2, *How to Shim the Boom.*

4 Extend and retract the boom through the entire range of motion to check for tight spots that may cause binding or scraping of the boom.

Note: Always maintain squareness between the outer and inner boom tubes.

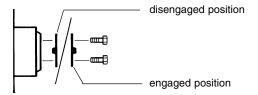
D-2 Check the Free-wheel Configuration


Proper use of the free-wheel configuration is essential to safe machine operation. The free-wheel configuration is used primarily for towing. A machine configured to free-wheel without operator knowledge may cause death or serious injury and property damage.

AWARNING Collision hazard. Select a work site that is firm and level.

Component damage hazard. If the machine must be towed, do not exceed 2 mph / 3.2 km/h.

- 1 Chock the steer wheels to prevent the machine from rolling.
- 2 Center a lifting jack of ample capacity (20,000 lbs / 10,000 kg) under the drive chassis between the wheels at the non-steer end of the machine.
- 3 Lift the wheels off the ground and place blocks under the drive chassis for support.
- 4 Disengage the drive hubs by turning over the drive hub disconnect caps on each non-steer wheel hub.

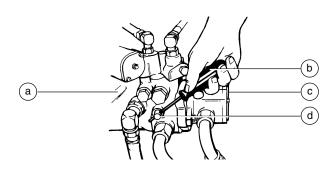


- 5 Manually rotate each non-steer wheel.
- Result: Each non-steer wheel should rotate with minimum effort.
- 6 Re-engage the drive hubs by turning over the hub disconnect caps. Rotate each wheel to check for engagement. Lift the machine and remove the blocks.

AWARNING Collision hazard. Failure to re-engage the drive hubs could result in death or serious injury and property damage.

4WD models:

- 7 Chock the non-steering wheels to prevent the machine from rolling.
- 8 Center a lifting jack with a minimum capacity of 25,000 lbs / 12000 kg under the drive chassis between the steer wheels.
- 9 Lift the wheels off the ground and then place blocks under the drive chassis for support.
- 10 Disengage the drive hubs by turning over the drive hub disconnect caps on each steer wheel hub.


- 11 Manually rotate each steer wheel.
- O Result: Each steer wheel should rotate with minimum effort.
- 12 Re-engage the drive hubs by turning over the drive hub disconnect caps. Rotate each wheel to check for engagement. Lift the machine and remove the blocks.

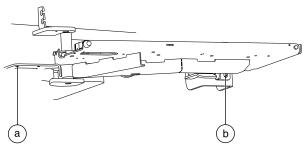
AWARNING Collision hazard. Failure to re-engage the drive hubs could result in death or serious injury and property damage.

All models:

13 Be sure the free-wheel valve on the drive pump is closed (clockwise).

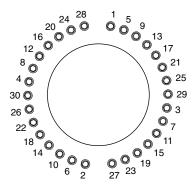
Note: The free-wheel valve is located on the drive pump, and should always remain closed.

- drive pump
- screwdriver b
- lift pump
- free-wheel valve


D-3 Check the Turntable Rotation Bearing Bolts

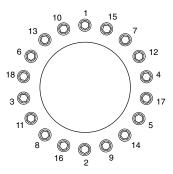
Maintaining proper torque on the turntable bearing bolts is essential to safe machine operation. Improper bolt torque could result in an unsafe operating condition and component damage.

- 1 Raise the secondary boom approximately 8 feet / 2.4 m.
- 2 Remove the engine tray retaining fastener. Swing the engine tray out away from the machine.



- engine tray anchor hole
- engine tray retaining fastener
- 3 Locate the engine tray anchor hole at the pivot end of the engine tray.

4 Install the bolt that was just removed into the anchor hole to secure the engine tray from moving.


AWARNING Crushing hazard. Failure to install the bolt into the engine tray to secure it from moving could result in death or serious injury.

5 Confirm that each turntable mounting bolt is torqued in sequence to specification. Refer to Section 2, *Specifications*.

Bolt torque sequence (from above turntable)

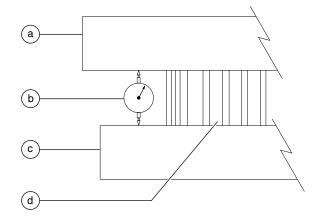
- 6 Lower the boom to the stowed position.
- 7 Confirm that each bearing mounting bolt under the drive chassis is torqued in sequence to specification. Refer to Section 2, Specifications.

Bolt torque sequence (from below chassis)

- 8 Lower the secondary boom to the stowed position.
- 9 Remove the engine tray retaining fastener from the engine tray anchor hole at the pivot end of the engine tray.
- 10 Swing the engine tray in towards the machine.
- 11 Install the bolt that was just removed into the original hole to secure the engine tray.

Crushing hazard. Failure to install the bolt into the engine tray to secure it from moving could result in death or serious injury.

D-4 Inspect for Turntable Bearing Wear



Periodic inspection of turntable bearing wear is essential to safe machine operation, good machine performance and service life. Continued use of a worn turntable bearing could create an unsafe operating condition, resulting in death or serious injury and component damage.

Note: Perform this procedure with the machine on a firm, level surface and the boom in the stowed position.

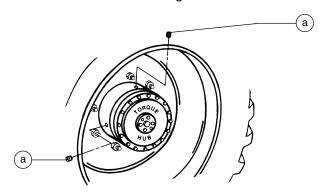
- 1 Grease the turntable bearing. See A-10, *Grease the Turntable Bearing and Rotate Gear.*
- 2 Torque the turntable bearing bolts to specification. See D-3, *Check the Turntable Rotation Bearing Bolts*.
- 3 Start the machine from the ground controls and fully elevate, but do not extend, the primary boom and jib. The riser should remain in its stowed position.
- 4 Place a dial indicator between the drive chassis and the turntable at a point that is directly under, or inline with, the boom and no more than 1 inch / 2.5 cm from the bearing.

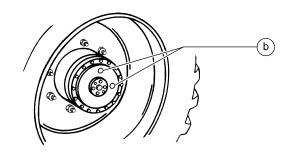
Note: To obtain an accurate measurement, place the dial indicator no more than 1 inch / 2.5 cm from the turntable rotation bearing.

- a turntable
- b dial indicator
- c drive chassis
- d turntable rotation bearing
- 5 Adjust the dial indicator need to the "zero" position.
- 6 Elevate the riser, but do not extend it. Move the primary boom and jib to horizontal and fully extend.
- 7 Note the reading on the dial indicator.
- Result: The measurement is less than 0.063 inch / 1.6 mm. The bearing is good.
- Result: The measurement is more than 0.063 inch / 1.6 mm. The bearing is worn and needs to be replaced.
- 8 Move the boom sections to the positions indicated in step 3. Visually inspect the dial indicator to be sure the needle returns to the "zero" position.

- 9 Remove the dial indicator and rotate the turntable 90°.
- 10 Repeat steps 4 through 9 until the rotation bearing has been checked in at least four equally spaced areas 90° apart.
- 11 Lower the boom to the stowed position and turn the machine off.
- 12 Remove the dial indicator from the machine.

D-5 Replace the Drive Hub Oil

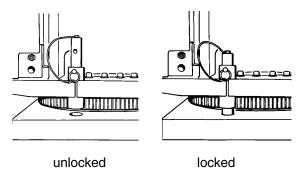



Replacing the drive hub oil is essential for good machine performance and service life. Failure to replace the drive hub oil at yearly intervals may cause the machine to perform poorly and continued use may cause component damage.

Drive Hubs:

- Select the drive hub to be serviced. Drive the machine until one of the two plugs is at the lowest point.
- 2 Remove both plugs and drain the oil into a suitable container.
- 3 Drive the machine until one plug is at the top and the other is at 90 degrees.

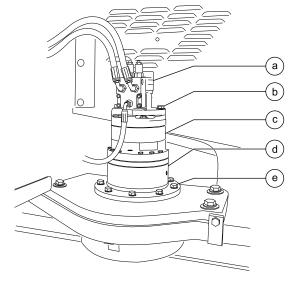
models with pipe plugs



models with o-ring plugs

- 4 Fill the hub with oil from the top hole until the oil level is even with the bottom of the side hole. Apply pipe thread sealant to the plugs. Install the plugs.
- 5 **Models with pipe plugs:** Apply pipe thread sealant to the plugs and install the plugs.
 - **Models with O-ring plugs:** Install the plugs into the drive hub.
- 6 Repeat steps 1 through 5 for the other drive hub.

Turntable Rotate Drive Hub:


1 Secure the turntable from rotating with the turntable rotation lock pin.

2 Remove the motor/brake mounting bolts, and then remove the motor and brake from the drive hub and set them to the side.

Component damage hazard. Hoses can be damaged if they are kinked or pinched.

- motor
- b motor/brake mounting bolts
- c brake
- 3 Remove the drive hub mounting bolts, and use a lifting device to remove the drive hub from the machine.
- 4 Remove the plug from the side of the drive hub. Drain the oil from the hub into a container of adequate capacity. Refer to Section 2, *Specifications*.
- 5 Install the drive hub. Torque the drive hub mounting bolts to specification. Refer to Section 2, *Specifications*.
- 6 Install the brake and motor onto the drive hub. Torque the motor/brake mounting bolts to specification. Refer to Section 2, *Specifications*.
- 7 Fill the hub with oil from the side hole until the oil level is even with the bottom of the hole. Apply pipe thread sealant to the plug. Install the plug.
- 8 Adjust turntable rotation gear backlash. Refer to Repair Procedure 9-1, *How to Adjust the Turntable Rotation Gear Backlash.*

D-6 Replace the Hydraulic Filter Elements

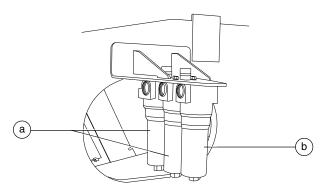
Genie requires that this procedure be performed annually or every 1000 hours, whichever comes first. Perform this procedure more often if dusty conditions exist.

Replacement of the hydraulic filters is essential for good machine performance and service life. A dirty or clogged filter may cause the machine to perform poorly and continued use may cause component damage. Extremely dirty conditions may require that the filter be replaced more often.

Bodily injury hazard. Beware of hot oil. Contact with hot oil may cause severe burns.

Note: Perform this procedure with the engine off.

Hydraulic return filter:


- 1 Open the ground controls side turntable cover and locate the hydraulic return filter mounted on the hydraulic tank.
- 2 Place a suitable container under the hydraulic tank return filter.
- 3 Remove the filter with an oil filter wrench.
- 4 Apply a thin layer of fresh oil to the gasket of the new oil filter.

- 5 Install the new hydraulic return filter element and tighten it securely by hand. Clean up any oil that may have spilled during the installation procedure.
- 6 Use a permanent ink marker to write the date and number of hours from the hour meter on the oil filter.

Medium and high pressure filters:

Note: The medium pressure filter is for the charge pump. One high pressure filter is for all boom and steer functions. The other high pressure filter is for the oscillating axle circuit and flatform manifold.

7 Open the engine side turntable cover and locate the three filters mounted to the bulkhead.

- a high pressure filters
- medium pressure filter
- 8 Place a suitable container under the filters.
- 9 Remove the filter housing by using a wrench on the nut provided on the bottom of the housing.

- 10 Remove the filter element from the housing.
- 11 Inspect the housing seal and replace it if necessary.
- 12 Install the new medium and high pressure filter elements into the housings and tighten them securely.
- 13 Clean up any oil that may have spilled during the installation procedure.
- 14 Use a permanent ink marker to write the date and number of hours from the hour meter on the oil filter housings.
- 15 Start the engine from the ground controls.
- 16 Inspect the filter housings and related components to be sure that there are no leaks.

D-7 Perform Engine Maintenance -Continental Models

Engine specifications require that this procedure be performed every 1000 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

- Spark plugs-replace
- O2 sensors-replace

Required maintenance procedures and additional engine information are available in the: Continental TME27 Owner's Manual (Continental part number WM10303).

Continental TME27 Owner's Manual Genie part number

111901

D-8 Perform Engine Maintenance Deutz Models

Engine specifications require that this procedure be performed every 1000 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

All models:

- Fuel filter/water separator-replace
- V-belts-replace
- Charge air cooler- drain lube oil/condensate
- Cold starting device (if equipped)- check
- Hoses and clamps- inspect/replace
- Engine mounts-inspect/tighten

Required maintenance procedures and additional engine information are available in the *Deutz 2011 Series Operation Manual* (Deutz part number 0312-3547) OR the *Deutz 2.9 L4 Series Operation Manual* (Deutz part number 0312-3893)

Deutz 2011 Series Operation Manual Genie part number	139320
Deutz 2.9 L4 Series Operation Manual Genie part number	1251561

D-9 Perform Engine Maintenance Perkins Models

Engine specifications require that this procedure be performed every 1000 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

804D Models

- Alternator-check
- Engine valve lash- inspect/adjust
- Starter- check
- Turbocharger-check

404F Models

- Alternator and fan belts- replace
- Crankcase breather (canister)- replace
- Engine valve lash- check
- Turbocharger-inspect

Required maintenance procedures and additional engine information are available in the: Perkins 800D Series Operation Manual (Perkins part number SEBU8324) OR the Perkins 404F Series Operation Manual (Perkins part number SEBU8609).

Perkins 800D Series Operation Manual Genie part number	111332
Perkins 404F Series Operation Manual Genie part number	1251562

Checklist E Procedures

E-1 Test or Replace the Hydraulic Oil

Replacement or testing of the hydraulic oil is essential for good machine performance and service life. Dirty oil and suction strainers may cause the machine to perform poorly and continued use may cause component damage. Extremely dirty conditions may require oil changes to be performed more often.

Note: Before replacing the hydraulic oil, the oil may be tested by an oil distributor for specific levels of contamination to verify that changing the oil is necessary. If the hydraulic oil is not replaced at the two year inspection, test the oil quarterly. Replace the oil when it fails the test.

Note: Perform this procedure with the boom in the stowed position.

- 1 GM, Ford and Continental models: Turn the valve on the LPG tank clockwise to the off position (if equipped). Then slowly disconnect the hose from the LPG tank.
- 2 GM, Ford and Continental models: Open the clamps from the LPG tank straps and remove the LPG tank from the machine (if equipped).
- 3 Models with hydraulic tank shut-off valves: Locate the two hydraulic tank valves at the hydraulic tank through the access hole underneath the turntable. Close the valves.
- 4 Place a suitable container underneath the hydraulic tank.

- 5 Remove the drain plug from the hydraulic tank and completely drain the tank into a suitable container. Refer to Section 2, Specifications.
- 6 Tag, disconnect and plug the two suction hoses and supply hose for the auxiliary pump from the hydraulic tank. Cap the fittings on the tank.

Note: The hoses can be accessed through the access hole under the turntable.

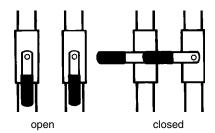
- 7 Tag, disconnect and plug the return filter hydraulic hose at the return filter. Cap the fitting on the filter housing.
- 8 Remove the ground controls side turntable cover.
- 9 Support the hydraulic tank with an appropriate lifting device.
- 10 Remove the hydraulic tank mounting fasteners.
- 11 Remove the hydraulic tank from the machine.

AWARNING Crushing hazard. The hydraulic tank could become unbalanced and fall if not properly supported when removed from the machine.

- 12 Remove the hydraulic return filter housing mounting fasteners. Remove the hydraulic return filter housing from the hydraulic tank.
- 13 Remove the suction strainers from the tank and clean them using a mild solvent.
- 14 Rinse out the inside of the tank using a mild solvent.

- 15 Install the suction strainers using a thread sealant on the threads.
- 16 Install the drain plug using a thread sealant on the threads.
- 17 Install the hydraulic return filter housing onto the hydraulic tank.
- 18 Install the hydraulic tank onto the machine.
- 19 Install the two suction hoses to the suction strainers.
- 20 Install the supply hose for the auxiliary power unit and the return filter hose.

Models with hydraulic tank shut-off valves:


- 21 Open the two hydraulic tank valves at the hydraulic tank.
- 22 Fill the tank with hydraulic oil until the level is within the top 2 inches / 5 cm of the sight gauge. Do not overfill.
- 23 Clean up any oil that may have spilled.

24 Prime the pump. Refer to Repair Procedure 7-2, *How to Prime the Pump.*

Note: Always use pipe thread sealant when installing the suction hose fittings and the drain plug.

NOTICE

Component damage hazard. The engine must not be started with the hydraulic tank shut-off valves in the closed position or component damage will occur. If the tank valves are closed, remove the key from the key switch and tag the machine to inform personnel of the condition.

E-2 Perform Engine Maintenance Perkins Models

Engine specifications require that this procedure be every 2000 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

804D Models

- Cooling system coolant- replace
- Engine mounts- check

404F Models

- · Alternator-check
- Engine mounts- check
- Starter- check

Required maintenance procedures and additional engine information are available in the: Perkins 800D Series Operation Manual (Perkins part number SEBU8324) OR the Perkins 404F Series Operation Manual (Perkins part number SEBU8609).

Perkins 800D Series Operation Manual

Genie part number 111332

Perkins 404F Series Operation Manual

Genie part number 1251562

E-3 Perform Engine Maintenance Deutz Models

Engine specifications require that this procedure be performed every 2 years.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

All models:

Cooling system coolant- replace

Required maintenance procedures and additional engine information are available in the: Deutz 2011 Series Operation Manual (Deutz part number 0312-3547) OR the Deutz 2.9 L4 Series Operation Manual (Deutz part number 0312-3893)

Deutz 2011 Series Operation Manual Genie part number 139320 Deutz 2.9 L4 Series Operation Manual Genie part number 1251561

E-4 Perform Engine Maintenance Perkins Models

Engine specifications require that this procedure be performed every 3000 hours.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

804D Models

Water pump-inspect

404F Models

- Thermostat-replace
- Diesel particulate filter- clean
- Fuel injectors- test/replace
- Flow plugs (ARD combustion)- replace
- Radiator cap-replace
- Water pump-inspect

Required maintenance procedures and additional engine information are available in the: Perkins 800D Series Operation Manual (Perkins part number SEBU8324) OR the Perkins 404F Series Operation Manual (Perkins part number SEBU8609).

Perkins 800D Series Operation Manual Genie part number	111332
Perkins 404F Series Operation Manual	
Genie part number	1251562

E-5 Perform Cooling Sytem Maintenance Perkins 404F Models

Engine specifications require that this procedure be performed at various intervals.

Proper engine maintenance, following the engine manufacturer's maintenance schedule, is essential to good engine performance and service life. Failure to perform the maintenance procedures can lead to poor engine performance and component damage.

Every 3000 hours or 2 years

• Heavy duty coolant- replace

Every 12000 hours or 6 years

• Extended life coolant- replace

Required maintenance procedures and additional engine information are available in the: Perkins 404F Series Operation Manual (Perkins part number SEBU8609).

Perkins 404F Series Operation Manual
Genie part number 1251562

Repair Procedures

Observe and Obey:

- Repair procedures shall be completed by a person trained and qualified on the repair of this machine.
- ☑ Immediately tag and remove from service a damaged or malfunctioning machine.
- Repair any machine damage or malfunction before operating the machine.

Before Repairs Start:

- Read, understand and obey the safety rules and operating instructions in the Operator's Manual on your machine.
- ☑ Be sure that all necessary tools and parts are available and ready for use.
- ☑ Use only Genie approved replacement parts.
- Read each procedure completely and adhere to the instructions. Attempting shortcuts may produce hazardous conditions.
- ☑ Unless otherwise specified, perform each repair procedure with the machine in the following configuration:
 - · Machine parked on a firm, level surface
 - · Boom in the stowed position
 - Turntable rotated with the boom between the circle-end (yellow arrow) wheels
 - Turntable secured with the turntable rotation lock pin
 - Key switch in the off position with the key removed
 - · Wheels chocked
 - · All external AC power supply disconnected from the machine

About This Section

Most of the procedures in this section should only be performed by a trained service professional in a suitably equipped workshop. Select the appropriate repair procedure after troubleshooting the problem.

Perform disassembly procedures to the point where repairs can be completed. To re-assemble, perform the disassembly steps in reverse order.

Symbols Legend

Safety alert symbol—used to alert personnel to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

ADANGER

Used to indicate the presence of an imminently hazardous situation which, if not avoided, will result in death or serious injury.

AWARNING

Used to indicate the presence of a potentially hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

With safety alert symbol—used to indicate the presence of a potentially hazardous situation which, if not avoided, may cause minor or moderate injury.

NOTICE

Used to indicate the presence of a potentially hazardous situation which, if not avoided, may result in property damage.

Note: Used to indicate operation or maintenance information.

- Indicates that a specific result is expected after performing a series of steps.
- Indicates that an incorrect result has occurred after performing a series of steps.

Genîe

Display Module

This table lists the various screens and menu options of the operating software. Some display menus are for informational purpose only, while others can be used to change the machine operating parameters. The key switch must be in the off position before entering the programming mode.

Always exit the programming mode before turning the red Emergency Stop button to the off position.

Screen	To Enter	Information Displayed	Range
	Power on, configuration message	Boom Type(Z80,4WS,ETC.), Engine Type, Software Version	
Operator	Default	Hour meter (On power up)	
		Engine Speed &	
		Engine Oil Pressure PSI (English) &	
		Engine Oil Pressure kPa (metric) &	
		Engine Temperature F (English) @	Engine temperature is not
		Engine Temperature C (metric) @	displayed until engine is
		Primary Boom Angle Sensor	above 100°F / 38°C
		TT Level Sensor X	
		TT Level Sensor Y	
		Platform Angle	
		Battery Volts	
Status	With the key	Hydraulic Pressure PSI	0-4500 PSI
	switch on,	Hydraulic Pressure kPa	0-31000 kPa
	press the ± and =	DPF Soot	0-150%
	at the same	Force DPF Regeneration	(No/Yes)
	time	Inhibit DPF Regeneration	(No/Yes)
		Primary Boom Zone	<=0 DEG, >0 DEG, =65 DEG
		Primary Boom Length	= 0', >0', >22'
		Secondary Boom Length	= 0 FT, > 0 FT
		Secondary Boom Angle	= 0 DEG, .>0 DEG, = 65 DEG

Screen	To Enter	Information Displayed	Range
Unit/	,	Metric/English (measurement units)	Use +/- buttons to change
Language	switch off, press and hold the	Display Language	English, German, French, Spanish, Portuguese, Italian, Dutch, and Swedish. Check new translations. Check scrolling of messages in Spanish with more than 75 characters.
Drive	,	Forward Not Stowed Drive Speed pct	120% (default) 50% min
Functions	switch off, press and	Forward Low Drive Speed pct	120% (default) 50% min
	hold the 년 button and turn the key switch to the on position. Release the년 button	Forward High Drive Speed pct	120% max and 50% min, 100%(default)
		Reverse Not Stowed Drive Speed pct	120% max and 50% min, 100% (default)
		Reverse Low Drive Speed pct	120% max and 50% min, 100% (default)
		Reverse High Drive Speed pct	120% max and 50% min, 100% (default)
		Drive Accel pct	125% max and 25% min, 100% (default)
		Drive Decel pct	125% max and 25% min, 100% (default)
		Speed limit on steer angle	100% max and 0% min, 75% (default)

Screen	To Enter	Information Displayed	Range	
Boom Functions	switch off,	Primary Boom Up speed Stowed	120% max and 50% min, 100% (default)	
Speeds	press and hold the 💾 button and	Primary Boom Up speed not Stowed	120% max and 50% min, 100% (default)	
	turn the key switch to the	Primary Boom Down speed Stowed	120% max and 50% min, 100% (default)	
	Release the	Primary Boom Down speed not Stowed	120% max and 50% min, 100% (default)	
	button and press ±	Primary Boom Extend Speed	120% max and 50% min, 100% (default)	
		Primary Boom Retract Speed	120% max and 50% min, 100% (default)	
		Secondary Boom Up Speed Stowed	120% max and 50% min, 100% (default)	
		Secondary Boom Up Speed Not Stowed	120% max and 50% min, 100% (default)	
		Secondary Boom Down Speed Stowed	120% max and 50% min, 100% (default)	
		Secondary Boom Down Speed Not Stowed	120% max and 50% min, 100% (default)	
		Secondary Boom Ext Speed	120% max and 50% min, 100% (default)	
		Secondary Boom Ret Speed	120% max and 50% min, 100% (default)	
			TT-Rotate speed Retracted	120% max and 50% min, 100% (default)
		TT-Rotate speed Not Retracted	120% max and 50% min, 100% (default)	
		Jib Up/Down speed	120% max and 75% min, 100% (default)	

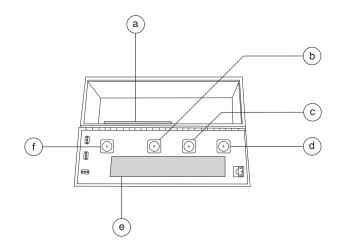
Screen	To Enter	Information Displayed	Range
Functions	s switch off, press and hold the 의 button and turn the key	Primary Boom Up/Down ramp accel % Primary Boom Up/Down ramp decel %	150% max and 50% min, 100% (default) 5% increment
		button and	Primary Boom Extend/Retract ramp
	on position.	Primary Boom Extend/Retract ramp decel %	150% max and 50% min, 100% (default) 5% increment
	and press ± ± ± ±.	Secondary Boom ramp accel %	150% max and 50% min, 100% (default) 5% increment
		Secondary Boom ramp decel %	150% max and 50% min, 100% (default) 5% increment
		TT-Rotate ramp accel % TT-Rotate ramp decel %	150% max and 50% min, 100% (default) 5% increment
		Jib Up/Down ramp decel %	150% max and 50% min, 100% (default) 5% increment
			150% max and 50% min, 100% (default) 5% increment
			150% max and 50% min, 100% (default) 5% increment

Screen	To Enter	Information Displayed	Range
Valve	•	Reset Drive valve defaults (YES/NO)	
calibration	switch off, press and hold the 🖽	Reset Primary Boom Up/Down valve defaults (YES/NO)	
	button and turn the key	Reset Primary Boom Ext/Ret defaults (YES/NO)	
	switch to the on position. Release the	Reset Secondary Boom valve defaults (YES/NO)	
	Helease the	Reset TT Rotate valve defaults (YES/NO)	
	and press 그 그 린 린.	Allow Primary Boom Up/Down speed calibration (YES/NO)	
		Allow Primary Boom Ext/Ret speed calibration (YES/NO)	
		Allow Secondary Boom Up/Down speed calibration (YES/NO)	
		Allow TT Rotate speed calibration (YES/NO)	
		Reset Drive joystick defaults (YES/NO)	
		Reset Pri. Boom Up/Down joystick defaults (YES/NO)	
		Reset Pri. Boom Ext/Ret joystick defaults (YES/NO)	
		Reset Secondary Boom joystick defaults (YES/NO)	
		Reset TT Rotate joystick defaults (YES/NO)	
		Reset Steer joystick defaults (YES/NO)	

Screen	To Enter	Information Displayed	Range
Sensor	With the key switch off, press and	Set Unit levels to gravity	
calibration		Unit Level Y-axis Millivolts per degree	
	hold the 💾	Unit Level X-axis Millivolts per degree	
	button and turn the key switch to the on position.	Set Platform level to gravity	
		Platform Level Sensor Millivolts per degree	
	╝ button	Reset Blue End Blue Side Steer Sensor (YES/NO)	
	and press ±	Reset Yellow End Blue Side Steer Sensor (YES/NO)	
		Reset Blue End Yellow Side Steer Sensor (YES/NO)	
		Reset Yellow End Yellow Side Steer Sensor (YES/NO)	
		Reset All Steer Sensors (YES/NO)	
		Reset Primary Boom Angle Sensor (YES/NO)	
		Primary Boom angle = 40deg (YES/NO)	
		Primary Boom angle = 70deg (YES/NO)	
Default	•	Reset Drive Functions (YES/NO)	
Reset	switch off, press and hold the	Reset Boom Function Speeds (YES/NO)	
		Reset Lift Function Ramps (YES/NO)	
		Reset All (Machine Require Calibration) (YES/NO)	
		Clear All Safety Switch Faults (YES/NO)	

Genîe

Screen	To Enter	Information Displayed	Range
Options	With the key switch off, press and	Boom Length Limit: No Limit (NO LT), Secondary Extend disabled (EXT LT), Secondary Function disabled (SEC LT)	
	hold the <u>H</u> button and turn the key switch to the	AC Generator Options: (NONE, BELT, HI_LO, HYDRL, GHG10)	
	on position. Release the button and press	Alarm: No, Motion (MO AL), Travel (TR AL), Descent (DE AL), Travel and Decent (TD AL)	
		Lift/Drive OPT: No (NO CO), Drive cut out while not stowed (DCONS), Lifting or Driving (LORDR)	
		Aux Drive OPT: (YES/NO)	
		Proximity Kill Switch (NONE/PROX)	
		Platform Overload (NONE PLFTS)	
		Work Light: (YES/NO)	
		Flashing Beacon: (YES/NO)	
		Drive Lights: (YES/NO)	30.0 max and 0.0 min, 10.0
		Disable Steer Mode Change while Driving: (YES/NO) Rocker Joystick Steering (YES/NO)	(default)
			0 to 30 minutes
			0 to 10 minutes, 10 is the
		Chassis Tilt Cutout (YES/NO)	default Only shown when Hydraulic gen is selected.
		Foot Switch Lockout 0 to 30 minutes	Holding + or - button will cause display to scroll through options or increment number settings automatically. 0.2 min inc/dec


Platform Controls

The platform controls contains two printed circuit boards:

The **LED circuit board** is mounted to the underside of the control box lid which contains the LED's. The LED circuit board sends the input from the operator to the platform controls ECM circuit board (PCON). The ECM circuit board (PCON) sends the data to the turntable control box (TCON) for processing.

The platform controls ECM circuit board (ALC-1000) communicates with the turntable controls. The joystick controllers at the platform controls utilize Hall Effect technology and require no adjustment. The operating parameters of the joysticks are stored in memory at the turntable controls. If a joystick controller error occurs or if a joystick is replaced, it will need to be calibrated before that particular machine function will operate. See 1-3, How to Calibrate a Joystick.

Each joystick controller should operate smoothly and provide proportional speed control over its entire range of motion.

- a platform controls ALC-1000 circuit board
- b primary boom extend/retract joystick
- secondary boom up/extend and down/retract joystick
- d drive/steer joystick controller
- e LED circuit board
- f primary boom up/down and turntable rotate left/right joystick

1-1

ALC-1000 Circuit Board

Note: When the ALC-1000 circuit board is replaced. the joystick controllers will need to be calibrated. See 1-3, How to Calibrate a Joystick.

How to Remove the ALC-1000 **Circuit Board**

- 1 Push in the red Emergency Stop button to the off position at both the ground and platform controls.
- 2 Locate the cables that connect to the bottom of the control box. Tag each cable and its location at the control box.
- 3 Tag and disconnect the cables from the bottom of the platform control box.
- 4 Remove the control cable plug retaining fasteners from the bottom of the platform control box.
- 5 Remove the platform control box lid retaining fasteners. Open the control box lid.
- 6 Locate the ALC-1000 circuit board mounted to the inside of the platform control box.

7 Attach a grounded wrist strap to the ground screw inside the platform control box.

AWARNING Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

OTICE

Component damage hazard. Electrostatic discharge (ESD) can damage printed circuit board components. Maintain firm contact with a metal part of the machine that is grounded at all times when handling printed circuit boards OR use a grounded wrist strap.

- 8 Carefully disconnect the wire connectors from the circuit board.
- 9 Remove the ALC-1000 circuit board mounting fasteners.
- 10 Carefully remove the ALC-1000 circuit board from the platform control box.

How to Remove the LED **Circuit Board**

- 1 Push in the red Emergency Stop button to the off position at both the ground and platform controls.
- 2 Remove the platform control box lid retaining fasteners. Open the control box lid.

3 Locate the LED circuit board mounted to the inside of the platform control box lid.

AWARNING Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

Component damage hazard. Electrostatic discharge (ESD) can damage printed circuit board components. Maintain firm contact with a metal part of the machine that is grounded at all times when handling printed circuit boards OR use a grounded wrist strap.

- 4 Carefully tag and disconnect the connectors from the LED circuit board.
- 5 Remove the LED circuit board retaining fasteners.
- 6 Carefully remove the LED circuit board from the platform control box lid.
- 4 Close the control box lid.

1-2 **Joysticks**

How to Calibrate a Joystick

The joystick controllers on this machine utilize digital Hall Effect technology for proportional control. If a joystick controller is disconnected or replaced, it must be calibrated before that particular machine function will operate.

Note: The joystick must be calibrated before the threshold, max-out or ramping can be set.

Note: After each joystick is calibrated, check the display at the ground control box. There should be no calibration faults shown on the display. If calibration faults exist, repeat steps 1 through 8 for that joystick controlled function.

Note: Perform this procedure with the engine off.

Drive functions:

- 1 Turn the key switch to the off position.
- 2 Press and hold the enter button a on the ground control panel while turning the key switch to platform controls.
- 3 Press the minus button twice, then press the enter button utwice.
- 4 Use the scroll button to scroll through the menu until reset drive joystick defaults is displayed. Press the + button to select YES, then press the ubutton.

- 5 Do not start the engine.
- 6 Locate the drive/steer joystick.
- 7 Move the drive/steer joystick full stroke in the forward direction and hold for 5 seconds, then return to the center or neutral position.
- 8 Move the drive/steer joystick full stroke in the reverse direction and hold for 5 seconds, then return to the center or neutral position.
- Result: The alarm at the ground controls should sound for a successful calibration.

Steer functions:

- 1 Turn the key switch to the off position.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to platform controls.
- 3 Press the minus button _ twice, then press the enter button _ twice.
- 4 Use the scroll button → to scroll through the menu until RESET STEER JOYSTICK DEFAULTS is displayed. Press the → button to select YES, then press the → button.
- 5 Do not start the engine.
- 6 Locate the drive/steer joystick.
- 7 Move the drive/steer joystick or thumb rocker switch (if equipped) full stroke in the left direction and hold for 5 seconds, then return to the center or neutral position.

- 8 Move the drive/steer joystick or thumb rocker switch (if equipped) full stroke in the right direction and hold for 5 seconds, then return to the center or neutral position.
- Result: The alarm at the ground controls should sound for a successful calibration.
- Result: If the alarm does not sound, repeat calibration procedure.

Primary boom extend/retract functions:

- 1 Turn the key switch to the off position.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to platform controls.
- 3 Press the minus button _ twice, then press the enter button _ twice.
- 4 Use the scroll button → to scroll through the menu until RESET PRIMARY BOOM EXTEND/RETRACT JOYSTICK DEFAULTS is displayed. Press the → button to select YES, then press the → button.
- 5 Do not start the engine.
- 6 Locate the primary boom extend/retract joystick.
- 7 Move the primary boom extend/retract joystick full stroke in the extend direction and hold for 5 seconds, then return to the center or neutral position.

- 8 Move the primary boom extend/retract joystick full stroke in the retract direction and hold for 5 seconds, then return to the center or neutral position.
- Result: The alarm at the ground controls should sound for a successful calibration.
- Result: If the alarm does not sound, repeat calibration procedure.

Secondary boom up/down and extend/retract functions:

- 1 Turn the key switch to the off position.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to platform controls.
- 3 Press the minus button twice, then press the enter button → twice.
- 4 Use the scroll button → to scroll through the menu until RESET SECONDARY BOOM JOYSTICK DEFAULTS is displayed. Press the → button to select YES, then press the → button.
- 5 Do not start the engine.
- 6 Locate the secondary boom up/down and extend/retract joystick.
- 7 Move the secondary boom up/down and extend/retract joystick full stroke in the up/ extend direction and hold for 5 seconds, then return to the center or neutral position.

- 8 Move the secondary boom up/down and extend/ retract joystick full stroke in the down/retract direction and hold for 5 seconds, then return to the center or neutral position.
- Result: The alarm at the ground controls should sound for a successful calibration.
- Result: If the alarm does not sound, repeat calibration procedure.

Primary boom up/down functions:

- 1 Turn the key switch to the off position.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to platform controls.
- 3 Press the minus button _ twice, then press the enter button _ twice.
- 4 Use the scroll button → to scroll through the menu until RESET PRIMARY BOOM UP/DOWN JOYSTICK DEFAULTS is displayed. Press the → button to select YES, then press the → button.
- 5 Do not start the engine.
- Locate the primary boom/turntable rotate joystick.
- 7 Move the boom/turntable rotate joystick full stroke in the up direction and hold for 5 seconds, then return to the center or neutral position.

- 8 Move the boom/turntable rotate joystick full stroke in the down direction and hold for 5 seconds, then return to the center or neutral position.
- Result: The alarm at the ground controls should sound for a successful calibration.
- Result: If the alarm does not sound, repeat calibration procedure.

Turntable rotate functions:

- 1 Turn the key switch to the off position.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to platform controls.
- 3 Press the minus button twice, then press the enter button → twice.
- 4 Use the scroll button to scroll through the menu until RESET TURNTABLE ROTATE LEFT/RIGHT JOYSTICK DEFAULTS is displayed. Press the toutton to select yes, then press the toutton.
- 5 Do not start the engine.
- 6 Locate the primary boom/turntable rotate joystick.
- 7 Move the boom/turntable joystick full stroke in the left direction and hold for 5 seconds, then return to the center or neutral position.
- 8 Move the boom/turntable joystick full stroke in the right direction and hold for 5 seconds, then return to the center or neutral position.
- Result: The alarm at the ground controls should sound for a successful calibration.
- Result: If the alarm does not sound, repeat calibration procedure.

How to Reset a Proportional Valve Coil Default

Note: This procedure only needs to be performed if a proportional valve has been replaced.

Note: After the valve coil defaults have been set, each machine function threshold and default function speed must be set. See *How to Set the Function Thresholds and Default Function Speeds*.

- 1 Turn the key switch to the off position.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to platform controls.
- 3 Press the minus button _ twice, then press the enter button _ twice.
- 4 Use the scroll button → to scroll through the menu until the function valve that needs to be reset is displayed. Press the → button to select YES, then press the → button.

How to Set the Function Thresholds and Default Functions Speeds

Note: Before the threshold and default function speeds can be set, the boom function proportional valve coil defaults must be set first.

See *How to Reset a Proportional Valve Coil Default.*

Note: If a boom function proportional valve coil has not been replaced and just want to reset the function speed to original factory settings, begin with step 10.

Note: Perform this procedure with the machine parked on a firm, level surface which is free of obstructions.

- 1 Start the engine from the platform controls.
- 2 Press down the foot switch.

Note: Be sure the engine rpm is set to foot switch activated high idle.

Function threshold:

- 3 Select a joystick controlled function that needs to have the threshold set.
- 4 Slowly move the joystick off center in either direction just until the machine function starts to move, then move the joystick very slowly towards the neutral or center position just before the machine function stops. Do not let go of the joystick.
- 5 While holding the joystick in position, press the engine start button at the platform controls to set the joystick controller threshold.

- 6 Repeat steps 3 through 5 for each joystick controlled machine function (primary boom up/down and turntable rotate left/right, primary boom extend/retract, secondary up/down and extend/retract, drive forward/reverse and steer left/right).
- 7 Once the threshold has been set, press and hold the engine start button until the engine shuts off. Do not press the red Emergency Stop button.

Note: Approximately 3 seconds after the engine shuts off, the alarm at the ground controls will sound to indicate the threshold settings are being saved in memory. Release the button.

- 8 At the ground controls, turn the key switch to the off position, wait a moment and then turn the key switch to platform controls.
- 9 Check the display at the ground controls to be sure there are no calibration faults.
- Result: There should be no calibration faults shown on the display. If calibration faults exist, repeat this procedure.

Function speeds:

Note: Be sure the machine is in the stowed position and the platform is rotated between the round end tires.

- 10 Start the engine from the platform controls.
- 11 Select a boom function that needs the function speed set.

12 Boom up/down functions: Move the joystick full stroke in the up direction. When the alarm sounds, move the joystick in the opposite direction full stroke until the alarm sounds again. Return the joystick to center.

Boom extend/retract functions: Raise the primary boom until it no longer rests on the boom cradle. Then move the joystick full stroke in the extend direction. When the alarm sounds, move the joystick in the opposite direction full stroke until the alarm sounds again. Return the joystick to center.

Turntable rotate functions: Raise the primary boom until it no longer rests on the boom cradle. Move the joystick full stroke in either the left or right direction until a drive enable zone is reached. Move the joystick in the opposite direction full stroke until the alarm sounds. Now move the joystick in the opposite direction full stroke until the alarm sounds again. Return the joystick to center.

13 Once the function speeds have been set, press and hold the engine start button until the engine shuts off. Do not press the red Emergency Stop button.

Note: Approximately 3 seconds after the engine shuts off, the alarm at the ground controls will sound to indicate the speed settings are being saved in memory. Release the button.

- 14 At the ground controls, turn the key switch to the off position, wait three seconds and then turn the key switch to platform controls.
- 15 Inspect the display at the ground controls to be sure there are no calibration faults.

Note: There should be no calibration faults shown on the display. If calibration faults exist, repeat this procedure.

How to Adjust the Function Speeds

Note: Perform this procedure with the boom in the stowed position. Refer to Section 2, *Specifications*.

- 1 Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to ground controls.
- 3 Press the plus button + twice, then press the minus button twice.
- 4 Press the scroll button until the function to be adjusted is displayed.
- 5 Press the plus button + to increase the speed or press the minus button to decrease the speed.
- 6 Press the enter button to save the setting in memory.
- 7 Perform this procedure until the machine function speed meets specification.

PLATFORM CONTROLS

How to Adjust the Function Ramp Rate Setting

The ramp rate setting of a joystick controls the time at which it takes for the joystick to reach maximum output, when moved out of the neutral position. The ramp rate settings of a joystick can be changed to compensate for hydraulic pump wear to maintain peak performance from the machine. Refer to Section 2, *Specifications*.

Note: Perform this procedure with the boom in the stowed position.

- 1 Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to ground controls.
- 3 Press the plus button + twice, then press the scroll button → twice.
- 4 Press the scroll button until the function to be adjusted is displayed.
- 5 Press the plus button + to increase the ramp rate or press the minus button to decrease the ramp rate.
- 6 Press the enter button to save the setting in memory.
- 7 Perform this procedure until the machine function speed meets specification.

Ramp Rate Specifications

Ramp rate (factory settings)	
Turntable rotate	
accelerate	4 seconds
decelerate	1.0 second
Primary boom up/down	
accelerate	3 seconds
decelerate	0.25 second
Primary boom extend/retract	
accelerate	3 seconds
decelerate	0.75 second
Secondary boom up/down	
accelerate	7 seconds
decelerate	0.75 second
Secondary boom extend/retract	
accelerate	7 seconds
decelerate	0.75 second
Drive	
accelerate	1.5 seconds
decelerate to neutral	0.5 second
decelerate, change of direction	0.5 second
decelerate, coasting	0.75 second
decelerate, braking	2 seconds
decelerate, shift from low to high speed	1 second
decelerate, shift from high to low speed	4 seconds

Platform Components

2-1 Platform

How to Remove the Platform

- 1 Separate the foot switch quick disconnect plug.
- Support the platform with an appropriate lifting device.
- 3 Locate the cables that connect to the bottom of the control box. Number each cable and its location at the platform control box.
- 4 Disconnect the cables from the bottom of the platform control box.
- 5 Remove the platform control box mounting fasteners. Remove the platform control box and set it aside.
- 6 Remove the air line to platform bracket retaining fasteners (if equipped).
- 7 Remove the weld cables from the platform (if equipped).
- 8 Remove the platform mounting fasteners and remove the platform from the machine.

AWARNING

Crushing hazard. The platform could become unbalanced and fall when it is removed from the machine if it is not properly supported.

2-2 Platform Leveling Cylinder

The platform leveling cylinder maintains platform leveling through the entire range of boom motion. This allows the platform to be level with the turntable. The ECM at the ground controls compares the difference in readings between the platform angle sensor and the turntable level sensor. The ECM at the ground controls sends a signal to the platform controls to open or close the appropriate platform level proportional valve on the platform manifold to maintain a level platform. The platform leveling cylinder is equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure.

How to Remove the Platform Leveling Cylinder

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Extend the boom until the platform leveling cylinder barrel-end pivot pin is accessible.
- 2 Raise the jib boom slightly and place blocks under the platform.

3 Lower the jib boom until the platform is resting on the blocks just enough to support the platform.

Note: Do not rest the entire weight of the boom on the blocks.

4 Tag, disconnect and plug the hydraulic hoses from the platform leveling cylinder at the bulkhead fittings located inside the boom tube at the platform end. Cap the bulkhead fittings on the boom tube.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 5 Remove the pin retaining fasteners from the platform leveling cylinder rod-end pivot pin. Do not remove the pin.
- 6 Remove the external snap rings from the barrelend pivot pin. Do not remove the pin.
- 7 Support and secure the jib boom cylinder to the jib boom with a strap or other suitable device. Protect the cylinder rod from damage.

ACAUTION

Crushing hazard. The jib boom cylinder will fall if not properly supported when the platform level cylinder rod-end pivot pin is removed.

8 Use a soft metal drift to remove the barrel-end pivot pin.

AWARNING

Crushing hazard. The platform and jib boom will fall when the platform leveling cylinder barrelend pivot pin is removed if not properly supported.

- 9 Support the rod end of the platform level cylinder.
- 10 Use a soft metal drift to tap the platform level cylinder rod-end pivot pin half way out and lower one of the leveling arms to the ground. Tap the pin the other direction and lower the opposite leveling arm. Do not remove the pin.
- 11 Use a soft metal drift to remove the platform level cylinder rod-end pivot pin.
- 12 Carefully pull the platform leveling cylinder out of the boom.

ACAUTION

Crushing hazard. The jib boom cylinder will fall if not properly supported when the platform level cylinder rod-end pivot pin is removed.

How to Bleed the Platform Leveling Cylinder

Note: Do not start the engine. Use auxiliary power for all machine functions in this procedure.

- 1 Raise the jib boom to a horizontal position.
- 2 Push the platform level up and down buttons through two complete platform leveling cycles to remove any air that might be in the system.

2-3 **Platform Rotator**

The platform rotator is a hydraulically activated helical gear assembly used to rotate the platform 160 degrees.

How to Remove the **Platform Rotator**

Component damage hazard. Mark the platform mounting weldment and the rotator flange before removing the platform mounting weldment. The platform mounting weldment must be replaced in the exact same position on the rotator flange as it was before removal. If a new rotator is installed or the rotator is disassembled, proper alignment can be achieved by rotating the rotator all the way to the left and then installing the platform mounting weldment all the way in the left position.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation.

Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

- 1 Remove the platform. See 2-1, How to Remove the Platform.
- 2 Disconnect the wire harness from the platform angle sensor.

3 Tag, disconnect and plug the hydraulic hoses from the platform rotator manifold. Cap the fittings on the manifold.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 4 Remove the hose and cable clamp from the platform support.
- 5 Remove the platform manifold mounting fasteners. Lay the platform manifold to the side.

Component damage hazard. Cables can be damaged if they are kinked or pinched.

- 6 Remove the power to platform electrical outlet box bracket mounting fasteners.
- 7 Remove the power to platform electrical outlet box from the platform and lay it to the side.
- 8 Remove the weld cable from the platform (if equipped).

AWARNING Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

- 9 Support the platform mounting weldment. Do not apply any lifting pressure.
- 10 Remove the eight mounting bolts from the platform mounting weldment.
- 11 Remove the center bolt and slide the platform mounting weldment off of the platform rotator.

AWARNING

Crushing hazard. The platform mounting weldment may become unbalanced and fall if it is not properly supported.

Genîe

- 12 Support the platform rotator. Do not apply any lifting pressure.
- 13 Remove the pin retaining fasteners from the jib boom and jib boom leveling arms to platform rotator pivot pins. Do not remove the pins.
- 14 Support the jib boom leveling arms with a suitable lifting device.
- 15 Use a soft metal drift to remove both pins and remove the platform rotator from the machine.

AWARNING

Crushing hazard. The jib boom leveling arms may fall if they are not properly supported when the jib boom leveling arm pivot pin is removed.

Component damage hazard. The platform angle sensor is a very sensitive instrument. It can be damaged internally if the platform rotator is dropped or sustains any physical shock, even if the damage is not visible.

How to Bleed the Platform Rotator

Before serial number 229:

Note: Do not start the engine. Use auxiliary power for all machine functions in this procedure.

- 1 Connect a clear hose to the top bleed valve. Place the other end of the hose in a container to collect any drainage. Secure the container to the boom.
- 2 Move the platform rotate switch to the left and then to the right through two platform rotation cycles, continue holding the switch to the right until the platform is fully rotated to the right.

- 3 Open the top bleed valve, but do not remove it.
- 4 Move the platform rotate switch to the left until the platform is fully rotated to the left. Continue holding the switch until air stops coming out of the bleed valve. Close the bleed valve.

AWARNING Crushing hazard. Keep clear of the platform during rotation.

- 5 Connect the clear hose to the bottom bleed valve. Open the bottom bleed valve, but do not remove it.
- 6 Hold the platform rotate switch to the right until the platform is fully rotated to the right. Continue holding the switch until air stops coming out of the bleed valve. Close the bleed valve.
- **AWARNING** Crushing hazard. Keep clear of the platform during rotation.
- 7 Remove the hose from the bleed valve and clean up any hydraulic oil that may have spilled.
- 8 Rotate the platform full right, then full left and inspect the bleed valves for leaks.

After serial number 228:

1 Rotate the platform full right, then full left until air is completely out of the rotator. Bleeding the valve is not necessary.

AWARNING Crushing hazard. Keep clear of the platform during rotation.

2-4 Platform Overload System

The platform overload system is designed to prevent the machine from continuing to operate when the load in the platform exceeds maximum rated capacity. Refer to the machine serial label for maximum capacity information.

If maximum platform capacity is exceeded, the alarm will sound and the platform overload indicator lights will flash at the platform control and "PLATFORM OVERLOAD" will display on the LCD screen at the ground control. The ground and platform controls will become disabled. Before normal machine operation can continue, the excess load will need to be removed from the platform.

If the excess load cannot be removed or if the operator at the platform controls is unable to correct the overloaded condition, another person at the ground controls can operate the machine using auxiliary power. There will be limited control of boom functions from the ground controls when using auxiliary power. Auxiliary power can be used to correct the overloaded platform condition in order to resume normal, safe operation of the machine.

Note: The engine must be turned off to use auxiliary power.

Note: **Software versions 1.03 and lower.** All ground control functions will not operate with auxiliary control. Refer to Repair Procedure 6-1, *How to Determine the Revision Level.*

Note: Recovery mode must be used. Refer to Repair Procedure 6-1, *Service Bypass / Recovery Keyswitch*.

Note: **Software versions 1.04 and higher.** All ground control functions will operate from auxiliary control. Refer to Repair Procedure 6-1, *How to Determine the Revision Level.*

How to Calibrate the Platform Overload System (if equipped)

Calibration of the platform overload system is essential to safe machine operation. Continued use of an improperly calibrated platform overload system could result in the system failing to sense an overloaded platform. The stability of the machine is compromised and it could tip over.

Note: Perform this procedure with the machine on a firm, level surface.

- 1 Turn the key switch to platform control. Start the engine and level the platform.
- 2 Determine the maximum platform capacity. Refer to the machine serial plate.
- 3 Remove all weight, tools and accessories from the platform.

Note: Failure to remove all weight, tools and accessories from the platform will result in an incorrect calibration.

4 Using a suitable lifting device, place a test weight equal to the maximum platform capacity at the center of the platform floor.

- 5 Move the platform up and down by hand, so it bounces approximately 2.5 to 5 cm / 1 to 2 inches. Allow the platform to settle.
- Result: The alarm should be off. The platform overload indicator light should be off at the platform controls and there should be no error message on the LCD display at the ground controls. Proceed to step 6.
- Result: The alarm is sounding. The platform overload indicator light is flashing at the platform controls and "PLATFORM OVERLOAD" should is displayed on the LCD screen at the ground controls. Slowly tighten the load spring adjustment nut in a clockwise direction in 10° increments until the overload indicator light turns off, and the alarm does not sound. Proceed to step 8.

Note: The platform will need to be moved up and down and allowed to settle between each adjustment.

Note: There may be a 2 second delay before the platform overload indicator light and alarm responds.

- 6 Move the platform up and down by hand, so it bounces approximately 2.5 to 5 cm / 1 to 2 inches. Allow the platform to settle.
- Result: The alarm should be off. The platform overload indicator light should be off at the platform controls and there should be no error message on the LCD display at the ground controls. Slowly loosen the load spring adjustment nut in a counterclockwise direction in 10° increments until the overload indicator light flashes at both the platform and ground controls, and the alarm sounds. Proceed to step 7.
- Result: The alarm should be sounding.
 The platform overload indicator light should be flashing at the platform controls and "PLATFORM OVERLOAD" should be displayed on the LCD screen at the ground controls.
 Repeat this procedure beginning with step 5.

Note: The platform will need to be moved up and down and allowed to settle between each adjustment.

Note: There may be a 2 second delay before the platform overload indicator lights and alarm responds.

- 7 Move the platform up and down by hand, so it bounces approximately 2.5 to 5 cm / 1 to 2 inches. Allow the platform to settle.
- Result: The alarm should be off. The platform overload indicator light should be off at the platform controls and there should be no error message on the LCD display at the ground controls. Proceed to step 8.
- Result: The overload indicator lights are flashing at the platform and ground controls, and the alarm is sounding. Repeat this procedure beginning with step 5.

Note: There may be a 2 second delay before the platform overload indicator light and alarm responds.

- 8 Add an additional 10 lb / 4.5 kg test weight to the platform.
- Result: The alarm should be sounding. The platform overload indicator light should be flashing at the platform controls and "PLATFORM OVERLOAD" should be displayed on the LCD screen at the ground controls. Proceed to step 9.
- Result: The alarm should be off. The platform overload indicator light should be off at the platform controls and there should be no error message on the LCD display at the ground controls. Remove the additional 10 lb / 4.5 kg test weight. Repeat this procedure beginning with step 6.

Note: There may be a 2 second delay before the platform overload indicator light and alarm responds.

- 9 Test all machine functions from the platform controls.
- Result: All platform control functions should not operate.
- 10 Turn the key switch to ground control.

- 11 Test all machine functions from the ground controls.
- Result: All ground control functions should not operate.
- 12 Using a suitable lifting device, lift the test weight off the platform floor.
- Result: The alarm should be off. The platform overload indicator light should be off at the platform controls and there should be no error message on the LCD display at the ground controls.

Note: There may be a 2 second delay before the overload indicator lights and alarm turn off.

- 13 Test all machine functions from the ground controls.
- Result: All ground control functions should operate normally.
- 14 Turn the key switch to platform control.
- 15 Test all machine functions from the platform controls.
- Result: All platform control functions should operate normally.

2-5 Platform Overload Recovery Message (software V2.04 and later)

If the ground controls LCD screen displays OVERLOAD RECOVERY, the emergency lowering system has been used while the platform was overloaded.

How to Clear the Platform Overload Recovery Message

Note: This message shall be cleared by a person trained and qualified on the troubleshooting and repair of this machine.

- 1 Turn the key switch to the off position.
- 2 Press and hold the enter button on the ground control panel while turning the key switch to ground controls. Hold the enter button for approximately 5 seconds.
- 3 Press the buttons on the ground controls in the following sequence:
 (plus +)(minus -)(minus -)(plus +).

- 4 Press the enter or previous button on the LCD screen until CLEAR OVERLOAD RECOVERY is displayed.
- 5 Press the plus button + or the minus button to select YES. Then press the buttons in the following sequence:

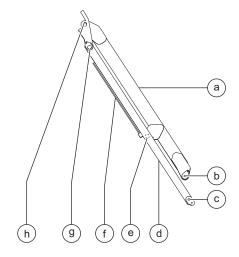
 (plus+)(plus+)(plus+)(minus-) and press the enter button → to accept.

Note: The passcode buttons (plus +)(plus +)(plus +)(minus -) must be entered in the proper sequence before the enter button - is pressed.

- 6 Press the enter or previous button on the LCD screen until EXIT is displayed.
- 7 Press the plus button + or minus button to select YES and then press the enter button .
- 8 Turn the key swith to the off position.

Jib Boom Components

3-1 Jib Boom


How to Remove the Jib Boom

Note: Perform this procedure with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

- 1 Remove the platform mounting weldment and the platform rotator. See 2-3, How to Remove the Platform Rotator.
- 2 Remove the hose and cable cover retaining fasteners from the jib boom. Remove the hose and cable cover from the machine.
- 3 Attach a lifting strap from an overhead crane to the jib boom for support. Do not apply lifiting pressure.
- 4 Tag, disconnect and plug the jib boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- jib boom
- platform rotator upper pivot pin
- platform rotator lower pivot pin
- jib boom leveling arm
- jib cylinder pivot pin
- jib boom cylinder
- primary boom lower pivot pin
- primary boom upper pivot pin

JIB BOOM COMPONENTS

- 5 Support the barrel end of the jib boom cylinder with another suitable lifting device.
- 6 Remove the pin retaining fastener from the jib boom lift cylinder barrel-end pivot pin.
- 7 Use a soft metal drift to remove the pin and let the cylinder hang down.

AWARNING

Crushing hazard. The jib boom could become unbalanced and fall if not properly supported when the jib boom lift cylinder barrel-end pivot pin is removed.

- 8 Secure the jib boom bellcrank to prevent it from moving.
- 9 Remove the hose and cable clamp from the jib boom pivot pin.
- 10 Remove the pin retaining fastener from the jib boom pivot pin. Do not remove the pin.
- 11 Place blocks under the platform leveling cylinder for support. Protect the cylinder from damage.
- 12 Use a soft metal drift to remove the pin. Carefully remove the jib boom from the primary boom.

AWARNING

Crushing hazard. The jib boom could become unbalanced and fall if not properly supported when removed from the machine.

- 13 Remove the pin retaining fasteners from the jib boom lift cylinder rod-end pivot pin. Do not remove the pin.
- 14 Slide both of the jib boom leveling arms off of the jib boom cylinder rod-end pivot pin and lay them off to the side.
- 15 Attach a lifting strap from an overhead crane to the lug on the rod end of the jib boom lift cylinder.
- 16 Attach a lifting strap from a second overhead crane to the jib boom bellcrank.
- 17 Use a soft metal drift to remove the jib boom lift cylinder rod-end pivot pin. Remove the jib boom lift cylinder and jib boom bellcrank from the machine.

AWARNING Crushing hazard. The jib boom lift cylinder and jib boom bellcrank could become unbalanced and fall if not properly supported when they are removed from the machine.

ACAUTION

Crushing hazard. The platform leveling cylinder may fall if not supported when the rod-end pivot pin is removed.

JIB BOOM COMPONENTS

3-2 Jib Boom Lift Cylinder

How to Remove the Jib Boom Lift Cylinder

Note: Perform this procedure with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

1 Raise the jib boom slightly and place blocks under the platform mounting weldment. Lower the jib boom until the platform is resting on the blocks just enough to support the platform.

Note: Do not rest the entire weight of the boom on the blocks.

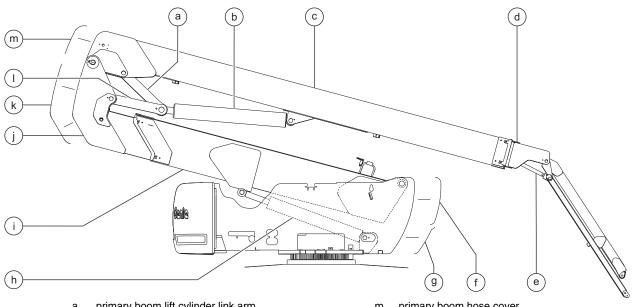
2 Tag, disconnect and plug the jib boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

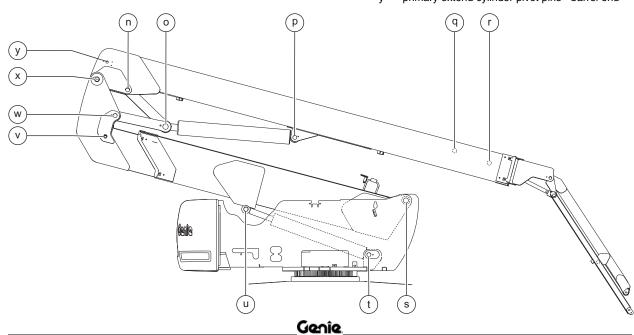
- 3 Remove the pin retaining fasteners from the jib boom lift cylinder rod-end pivot pin. Do not remove the pin.
- 4 Use a soft metal drift to tap the jib boom lift cylinder rod-end pivot pin half way out and lower one of the leveling arms to the ground. Tap the pin the other direction and lower the opposite leveling arm. Do not remove the pin.

ACAUTION Crushing hazard. The jib boom lift cylinder may fall if not supported when the rod-end pivot pin is removed.


- 5 Support the jib boom lift cylinder with a suitable lifting device.
- 6 Remove the pin retaining fastener from the jib boom lift cylinder barrel-end pivot pin. Use a soft metal drift to remove the barrel-end pivot pin and let the cylinder hang down.

AWARNING Crushing hazard. The platform and iib boom lift cylinder could become unbalanced and fall if not properly supported when the iib boom lift cylinder barrel-end lift pivot pin is removed.

- 7 Place blocks under the platform leveling cylinder for support. Protect the cylinder from damage.
- 8 Use a soft metal drift to remove the jib boom lift cylinder rod-end pivot pin. Remove the jib boom lift cylinder from the machine.


AWARNING Crushing hazard. The jib boom lift cylinder could become unbalanced and fall if not properly supported when removed from the machine.

Boom Components

- primary boom lift cylinder link arm
- primary boom lift cylinder b
- С primary boom
- primary extension boom d
- platform leveling cylinder
- upper turntable cover
- lower turntable cover
- secondary boom lift cylinder
- secondary boom
- secondary extension boom
- secondary boom hose cover
- primary boom lift cylinder lever arm

- primary boom hose cover
- primary boom link arm pivot pin
- 0 primary lift cylinder pivot pin - rod end
- primary lift cylinder pivot pin barrel end
- primary extend cylinder pivot pin rod end q
- platform level cylinder pivot pin barrel end
- secondary boom pivot pin
- secondary lift cylinder pivot pin barrel end
- secondary lift cylinder pivot pin rod end
- secondary extend cylinder pivot pin rod end
- secondary boom lever arm pivot pin
- primary boom pivot pin
- primary extend cylinder pivot pins barrel end

4-1 **Primary Boom Cable Track**

The primary boom cable track guides the cables and hoses running up the boom. It can be repaired link by link without removing the cables and hoses that run through it. Removing the entire primary boom cable track is only necessary when performing major repairs that involve removing the primary boom.

How to Remove the Cable Track

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

- 1 Tag and disconnect the wire connectors from the platform control box.
- 2 Tag, disconnect and plug the hydraulic hoses from the counterbalance valve manifold located on the platform rotator. Cap the fittings on the manifold.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 3 Remove the mounting fasteners from the power to platform outlet box. Remove the outlet box and lay to the side.
- 4 Remove the hose clamp from the platform support.
- 5 Tag and disconnect the electrical connector from the platform angle sensor.

Note: The platform angle sensor is mounted to the platform rotator.

- 6 Tag and disconnect the electrical connectors for the foot switch and jib boom limit switch.
- 7 Remove the platform manifold mounting fasteners. Remove the manifold and lay to the side.

Component damage hazard. Cables and hoses can be damaged if they are kinked or pinched.

- 8 Remove the hose and cable cover retaining fasteners from the jib boom. Remove the hose and cable cover from the machine.
- 9 Remove the hose and cable clamp from the jib boom pivot pin.

ACAUTION Crushing hazard. The jib boom may fall if not supported when the jib boom pivot pin is removed.

10 Tag, disconnect and plug the slave cylinder hydraulic hoses from the bulkhead fittings at the platform end of the primary boom. Cap the bulkhead fittings.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

11 Tag, disconnect and plug the jib boom cylinder hydraulic hoses. Cap the fittings.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

12 Remove the cotter pin from the platform end of the cable track tube.

Note: Always replace the cotter pin with a new one when installing the cable track.

- 13 Remove the fasteners from the cable track guide at the platform end of the primary boom. Remove the cable track guide from the machine.
- 14 Tag and disconnect the electrical connector from the limit switch at the pivot end of the primary boom.
- 15 Remove all hose clamps for the primary boom lift cylinder hydraulic hoses.

Note: The primary boom lift cylinder hydraulic hose clamps are located behind the cable track.

- 16 Support the end cover from the secondary boom at the pivot end of the primary boom.
- 17 Remove the cover retaining fasteners and remove the cover from the machine.

AWARNING Crushing hazard. The secondary boom hose cover could become unbalanced and fall if not properly supported when removed from the machine.

18 Tag, disconnect and plug each hydraulic hose from the bulkhead fittings that lead to the cable track. Cap the fittings.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 19 Tag and disconnect each electrical connector to wiring that leads to the cable track.
- 20 Pull all hoses and electrical cables through the opening in the primary boom at the pivot end.
- 21 Secure the upper and lower cable tracks together.
- 22 Attach a lifting strap from an overhead crane to the cable track.
- 23 Remove all cable track mounting fasteners.
- 24 Carefully remove the cable track from the machine and lay it on a structure capable of supporting it.

Component damage hazard. The boom cable track can be damaged if it is twisted.

OTICE

Component damage hazard. Cables and hoses can be damaged if they are kinked or pinched.

How to Repair the Cable Track

NOTICE

Component damage hazard. The boom cable track can be damaged if it is twisted.

Note: A cable track repair kit is available through the Genie Industries Service Parts Department.

- 1 Visually inspect the cable track and determine which 4-link section needs to be replaced.
- 2 Carefully remove the snap rings from each end of the damaged section of cable track.
- 3 Remove the retaining fasteners from the upper black rollers from the 4-link section of cable track to be replaced. Remove the rollers.
- 4 Lift up the hoses and cables and carefully remove the damaged 4-link section of cable track.

NOTICE

Component damage hazard. Hoses and cables can be damaged if they are kinked or pinched.

- 5 Remove the upper rollers from the replacement section of cable track.
- 6 Lift up the hoses and cables and carefully insert the new 4-link section of cable track.

NOTICE

Component damage hazard. Hoses and cables can be damaged if they are kinked or pinched.

- 7 Connect the ends of the replacement cable track section to the existing cable track using the snap rings.
- 8 Install the rollers onto the new section of cable track.
- 9 Operate the boom extend/retract function through a full cycle to ensure smooth operation of the cable track.

4-2 Primary Boom

How to Shim the Boom

- 1 Measure each wear pad.
- Result: Each wear pad meets minimum specification. Proceed to step 2.
- Result: Each wear pad does not meet minimum specification. Replace any wear pad that does not meet minimum specification. Proceed to step 2.
- 2 Extend the boom until the wear pads are accessible.
- 3 Loosen the wear pad mounting fasteners.
- 4 Install the new shims under the wear pad to obtain zero clearance and zero drag.
- 5 Tighten the mounting fasteners.
- 6 Extend and retract the boom through an entire cycle. Check for tight spots that could cause binding or scraping.

Note: Always maintain squareness between the outer and inner boom tubes.

Wear Pad Specifications

Primary boom wear	
pad specifications	Minimum
Top, bottom and	
side wear pads	5/8 inch
(platform end of boom)	15.9 mm
Side and bottom wear pads	¹ /2 inch
(pivot end of boom)	12.7 mm
Top wear pads	5/8 inch
(pivot end of boom)	15.9 mm
Secondary boom wear	
pad specifications	Minimum
Top, and side wear pads	5/8 inch
(extension end of boom)	15.9 mm
Bottom wear pads	1/2 inch
(extension end of boom)	12.7 mm
Top wear pads	¹ / ₂ inch
(pivot end of boom)	12.7 mm
Bottom and side wear pads	⁷ /8 inch
(pivot end of boom)	22.2 mm

How to Remove the Primary Boom

AWARNING Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: Perform this procedure with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

- 1 Remove the jib boom. See 3-1, How to Remove the Jib Boom.
- 2 Remove the fasteners securing the limit switch to the primary boom at the pivot end of the boom. Do not disconnect the wiring. Move the limit switch to a safe location.
- 3 Tag and disconnect the wire harness from the primary boom angle sensor (PBAS).

Note: The primary boom angle sensor is located inside the primary boom at the pivot end.

4 Tag, disconnect and plug the primary boom extension cylinder hydraulic hoses. Cap the fittings on the cylinder. Tag, disconnect and plug the hydraulic hoses routed through the primary boom at the union.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 5 Attach a lifting strap from an overhead crane to the barrel end of the primary boom lift cylinder.
- 6 Remove the pin retaining fasteners from the primary boom lift cylinder barrel-end pivot pin.
- 7 Place blocks under both ends of the primary boom lift cylinder for support.
- 8 Use a soft metal drift to remove the barrel-end pivot pin. Rest the barrel end of the primary boom cylinder on the blocks.

AWARNING Crushing hazard. The primary boom could become unbalanced and fall if not properly supported when the pivot pin is removed.

- 9 Attach a lifting strap from an overhead crane to the primary boom lift cylinder linkage arm. Support the arm.
- 10 Remove the pin retaining fasteners from the primary boom lift cylinder linkage arm where it connects to the primary boom.

11 Use a soft metal drift to remove the upper primary boom lift cylinder linkage arm pivot pin. Using a suitable lifting device remove the linkage arm from the machine.

ACAUTION

Crushing hazard. The upper primary boom lift cylinder linkage arm will fall if not properly supported when the pivot pin is removed.

- 12 Attach a 5 ton / 5000 kg overhead crane to the center point of the primary boom.
- 13 Remove the pin retaining fastener from the primary boom pivot pin.
- 14 Use a soft metal drift to remove the primary boom pivot pin.

AWARNING

Crushing hazard. The primary boom could become unbalanced and fall if not properly supported when the pivot pin is removed.

15 Carefully remove the primary boom from the machine and place it on a structure capable of supporting it.

AWARNING

Crushing hazard. The primary boom could become unbalanced and fall if not properly supported when removed from the machine.

Note: When the primary boom is installed, the primary boom angle sensor will need to be calibrated.

How to Disassemble the **Primary Boom**

Note: Complete disassembly of the primary boom is only necessary if the outer or inner primary boom tube must be replaced. The extension cylinder can be removed without completely disassembling the boom. See 4-4, How to Remove the Primary Boom Extension Cylinder.

- 1 Remove the primary boom. See 4-2, How to Remove the Primary Boom.
- 2 Place blocks under the barrel end of the primary boom extension cylinder for support.
- Remove the pin retaining fastener from the extension cylinder barrel-end pivot pin at the pivot end of the primary boom.
- 4 Use a soft metal drift to remove the pin.

AWARNING Crushing hazard. The primary boom could become unbalanced and fall if not properly supported when the pivot pin is removed.

5 Remove and label the location of the wear pads from the platform end of the primary boom.

Note: Pay careful attention to the location and number of shims used with each wear pad.

- 6 Attach a lifting strap from an overhead crane to the extension boom assembly.
- 7 Support and slide the extension boom assembly out of the primary boom tube and place it on a structure capable of supporting it.

AWARNING

Crushing hazard. The extension boom tube could become unbalanced and fall if not properly supported when removed from the primary boom tube.

Note: During removal, the overhead crane strap will need to be adjusted for proper balancing.

8 Remove the external snap rings from the extension cylinder rod-end pivot pin at the platform end of the extension tube.

AWARNING Crushing hazard. The extension cylinder could become unbalanced and fall if not properly supported when removed from primary boom extension tube.

9 Use a soft metal drift to remove the pin.

AWARNING Crushing hazard. The extension cylinder could become unbalanced and fall if not properly supported when removed from primary boom extension tube.

- 10 Attach a lifting strap from an overhead crane to the extension cylinder.
- 11 Working at the end of the extension boom tube opposite the jib boom mount, support and slide the extension cylinder out of the extension boom tube.

AWARNING

Crushing hazard. The extension cylinder could become unbalanced and fall if not properly supported when removed from primary boom extension tube.

Note: During removal, the overhead crane strap will need to be carefully adjusted for proper balancing.

4-3 **Primary Boom Lift Cylinder**

The primary boom lift cylinder raises and lowers the primary boom. The primary boom lift cylinder is equipped with a counterbalance valve to prevent movement in the event of a hydraulic line failure.

How to Remove the Primary Boom Lift Cylinder

AWARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

- 1 Raise the primary boom to a horizontal position.
- 2 Raise the secondary boom until the primary boom lift cylinder rod-end pivot pin is above the counterweight.

- 3 Attach a 5 ton / 5000 kg overhead crane to the platform end of the primary boom. Support the boom. Do not apply any lifting pressure.
- 4 Support both ends of the primary boom lift cylinder with a second overhead crane or similar lifting device.
- 5 Place blocks under the primary boom lift cylinder linkage arms for support.
- 6 Tag, disconnect and plug the primary boom lift cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

7 Remove the pin retaining fastener from the primary boom lift cylinder rod-end pivot pin.

8 Use a soft metal drift to remove the pin.

ADANGER

Crushing hazard. The primary boom will fall if not properly supported when the pivot pin is removed.

ADANGER

Crushing hazard. The lift cylinder will fall if not properly supported when the pivot pin is removed.

ACAUTION

Crushing hazard. The primary boom lift cylinder linkage arms may fall if not properly supported when the pivot pin is removed.

- 9 Remove the primary boom lift cylinder barrelend pivot pin retaining fasteners.
- 10 Use a soft metal drift to remove the barrel-end pivot pin. Remove the primary boom lift cylinder from the machine.

ADANGER

Crushing hazard. The lift cylinder will become unbalanced and fall if not properly supported when the pin is removed.

4-4 **Primary Boom Extension** Cylinder

The primary boom extension cylinder extends and retracts the primary boom extension tube. The primary boom extension cylinder is equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure.

How to Remove the Primary Boom Extension Cylinder

AWARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

- 1 Raise the primary boom to a horizontal position.
- 2 Extend the primary boom until the primary boom extension cylinder rod-end pivot pin is accessible.
- 3 Remove the access cover from the pivot end of the primary boom.

- 4 Place blocks under the barrel end of the primary boom extension cylinder for support.
- 5 Tag, disconnect and plug the primary boom extension cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 6 Working at the platform end of the boom, remove the external snap rings from the extension cylinder rod-end pivot pin.
- 7 Use a soft metal drift to remove the pin.

AWARNING Crushing hazard. The primary boom could fall when removed from the extension boom if not properly supported.

- 8 Remove the barrel-end pivot pin retaining fasteners.
- 9 Place a rod through the barrel-end pivot pin and twist to remove the pin.

10 Working at the pivot end of the boom, support and slide the extension cylinder out of the boom extension.

AWARNING

Crushing hazard. The extension cylinder could fall when removed from the extension boom if not properly supported.

NOTICE

Component damage hazard. Be careful not to damage the primary boom angle sensor (PBAS) when removing the cylinder from the primary boom.

NOTICE

Component damage hazard. Hoses and cables can be damaged if they are kinked or pinched.

Note: Note the length of the cylinder after removal. For ease of installation, the cylinder must be at the same length for reinstallation.

4-5 Primary Boom Angle Sensor

A properly functioning primary boom angle sensor (PBAS) is essential to safe machine operation. The primary boom angle sensor is used to limit the angle of the primary boom relative to ground. The ECM at the ground controls (TCON) monitors the position and angle of the primary boom using the signal from PBAS. The PBAS signal is used to control the ramping of the primary boom as well as velocity control, limiting the speed of the primary boom to 1.3 feet / 0.4 meters per second.

How to Replace the Primary Boom Angle Sensor

Note: Perform this procedure on a firm, level surface with the boom in the stowed position.

- 1 Remove the retaining fasteners from the boom end cover at the pivot end of the primary boom. Remove the cover from the machine.
- 2 Locate the primary boom angle sensor inside the primary boom at the boom pivot pin.
- 3 Tag and disconnect the electrical connector from the sensor.
- 4 Remove the angle sensor mounting bracket retaining fasteners.
- 5 Remove the wing nut from the threaded rod. Do not disconnect the threaded rod from the clevis yoke.

- 6 Remove the angle sensor and bracket assembly.
- 7 Remove the sensor retaining fasteners from the sensor bracket. Remove the angle sensor.
- 8 Install the new angle sensor onto the mounting bracket.
- 9 Install the angle sensor and bracket assembly.

Note: The sensor should be installed rotated in a fully counter clock-wise position.

- 10 Insert the threaded rod through the threaded rod adjustment bracket.
- 11 Move the threaded rod to the top of the slotted hole. Tighten the wing nut and hex nut towards each other.
- 12 Connect the electrical connector to the angle sensor.
- 13 Calibrate the primary boom angle sensor. See How to Calibrate the Primary Boom Angle Sensor.

ADANGER

Tip-over hazard. Failure to calibrate the primary boom sensor could result in the machine tipping over resulting in death or serious injury.

How to Calibrate the Primary Boom Angle Sensor

Note: Perform this procedure on a firm, level surface with the boom in the stowed position.

Note: A digital level will be required to perform this procedure.

- 1 Pull out the red Emergency Stop button at the platform controls. From the ground control box, turn the key switch to ground control and pull out the red Emergency Stop button while holding the enter button (3 or 4 seconds) until the engine symbol appears on the display at the ground control box, then release.
- 2 Enter sensor calibration mode by pressing the buttons at the ground controls in the following sequence: + + +.
- 3 Press the scroll button until RESET PRIMARY BOOM ANGLE SENSOR is shown on the display.
- 4 Press the plus button + to select yes, then press and hold the enter button + to accept.
- 5 Press the scroll button until EXIT is shown on the display. Press the plus button to select yes, then press and hold the enter button accept.
- Result: The alarm should sound.
- Result: The alarm does not sound. Repeat this procedure beginning with step 1.

- 6 Loosen the Primary Boom Angle Sensor (PBAS) assembly bracket fasteners attached to the primary boom. Loosen the wing nut and hex nut on the threaded rod to allow the threaded rod to move upward. Tighten the fasteners.
- 7 Set a digital level on top of the primary boom mast on a level part of the tube so it is viewable from the ground controls.
- 8 Start the engine.
- 9 Raise the boom until the digital level displays 70°.
- 10 Loosen the wing nut from threaded rod and move the threaded rod down until the engine turns off.
- 11 Screw threaded rod into clevis yoke. Tighten the wing nut to welded bracket. Tighten the jam nut to welded bracket. Tighten the PBAS fasteners to boom.
- Result: The ground control box display should read P9B & P11 FAULT.
- 12 Push in the red Emergency Stop button to the off position. Wait until display turns off before proceeding.
- 13 Pull out the red Emergency Stop button while holding the enter button (3 or 4 seconds) until the endgine symbol appears on the display at the ground control box, then release.

- 14 Enter sensor calibration mode by pressing the buttons at the ground controls in the following sequence: + + +.
- 15 Press the scroll button until PRIMARY BOOM ANGLE = 70° is shown on the display.
- 16 Press the plus button + to select yes, then press the enter button + to accept.
- 17 Press the scroll button until EXIT is shown on the display. Press the plus button to select yes, then press the enter button to accept.
- 18 At the ground controls, use auxiliary power and lower the boom until the faults are no longer shown on the display.
- Result: The flashing arrow in the display at the ground controls will turn off.
- Result: The flashing arrow in the display at the ground controls does not turn off. Repeat this procedure beginning with step 1.
- 19 Start the engine and activate the primary boom down function. Release the function enable button when the digital level displays 40°. Push in the red Emergency Stop button to the off position.
- 20 Pull out the red Emergency Stop button while holding the enter button (3 or 4 seconds) until the engine symbol appears on the display at the ground control box, then release.
- 21 Enter sensor calibration mode by pressing the buttons at the ground controls in the following sequence: + + + .

- 22 Press the scroll button until PRIMARY BOOM
 ANGLE = 40° is shown on the display.
- 23 Press the plus button + to select yes, then press the enter button + to accept.
- Result: The alarm should not sound.
- Result: The alarm does sound. Repeat this procedure beginning with step 1.
- 24 Press the scroll button until EXIT is shown on the display. Press the plus button

 to select yes, then press the enter button

 to accept.
- 25 Start the engine.
- 26 Activate the boom up function until the digital level reads 65°.
- Result: The primary boom should stop.
- Result: The primary boom does not stop. Immediately release the function enable button and lower the boom. Repeat this procedure beginning with step 1.

ADANGER

Tip-over hazard. If the boom does not stop at 65°, immediately release the function enable button and lower the primary boom. Failure to lower the boom could cause the machine to tip over resulting in death or serious injury.

4-6 Secondary Boom Cable Track

The secondary boom cable track guides the cables and hoses running up through the inside of the secondary boom. It can be repaired link by link without removing the cables and hoses that run through it. Removal of the secondary boom cable track is required to repair it.

How to Remove the Cable Track

Note: The secondary boom cable track must be removed with the secondary boom extension cylinder. See 4-9, *How to Remove the Secondary Boom Extension Cylinder*.

How to Repair the Cable Track

NOTICE

Component damage hazard. The boom cable track can be damaged if it is twisted.

NOTICE

A cable track repair kit is available through the Genie Industries Service Parts Department.

1 Remove the secondary boom extension cylinder.

Note: The secondary boom extension cylinder must be removed as an assembly with the cable tracks, cable track trays and cable track support tubes from the platform end of the secondary boom. See 4-9, How to Remove the Secondary Boom Extension Cylinder.

2 Visually inspect the cable track and determine which 4-link section needs to be replaced.

- 3 Carefully remove the snap rings from each end of the damaged section of cable track.
- 4 Remove the retaining fasteners from the upper black rollers from the 4-link section of cable track to be replaced. Remove the rollers.
- 5 Lift up the hoses and cables and carefully remove the damaged 4-link section of cable track.

OTICE

Component damage hazard. Hoses and cables can be damaged if they are kinked or pinched.

- 6 Remove the upper rollers from the replacement section of cable track.
- 7 Lift up the hoses and cables and carefully insert the new 4-link section of cable track.

Component damage hazard. Hoses and cables can be damaged if they are kinked or pinched.

- 8 Connect the ends of the replacement cable track section to the existing cable track using the snap rings.
- 9 Install the rollers onto the new section of cable track.
- 10 Re-assemble and install the extension cylinder assembly into the secondary extension boom.
- 11 Operate the boom extend/retract function through a full cycle to ensure smooth operation of the cable track.

4-7 **Secondary Boom**

How to Disassemble the **Secondary Boom**

Note: Complete disassembly of the secondary boom is only necessary if the outer or inner secondary boom tube must be replaced. The secondary extension boom tube can be removed with the secondary boom tube on the machine.

Note: The extension cylinder can be removed without completely disassembling the boom. See 4-9, How to Remove the Secondary Boom Extension Cylinder.

AWARNING Bodily injury hazard. The procedures in this section require specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

Follow the disassembly steps to the point required to complete the repair. Then re-assemble the secondary boom by following the disassembly steps in reverse order.

1 Remove the primary boom. See 4-2, How to Remove the Primary Boom.

2 Tag, disconnect and plug the hydraulic hoses at the primary boom lift cylinder. Cap the fittings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 3 Attach a lifting strap from an overhead crane to the lug on the barrel end of the primary boom lift cylinder. Use the overhead crane to raise the primary boom lift cylinder to a vertical position.
- 4 Remove the pin retaining fastener from the primary boom rod end pivot pin.
- 5 Use a slide hammer to remove the pin. Remove the primary boom lift cylinder and linkage arms from the machine.

AWARNING

Crushing hazard. The primary boom lift cylinder and linkage arms could become unbalanced and fall if not properly supported when the pin is removed.

- 6 At the platform end, remove the secondary boom access cover.
- 7 Tag, disconnect and plug the hydraulic hoses from the turntable. Cap the fittings.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt

- 8 Tag and disconnect the electrical cables from the turntable.
- 9 Remove the hose protector bracket.
- 10 Working at the platform end, place blocks under the barrel end of the secondary boom extension cylinder for support.
- 11 Remove the barrel-end retaining fasteners.
- 12 Using a suitable lifting device, lift the extension cylinder to clear the saddle blocks
- 13 Attach a lifting strap from an overhead crane to the secondary extension boom assembly.
- 14 Slide the secondary extension boom assembly out of the secondary boom tube approximately two feet and remove the wear pads from the secondary boom tube.
- 15 Support and slide the extension boom assembly out of the secondary boom tube and place it on a structure capable of supporting it.

AWARNING

Crushing hazard. The extension boom tube could become unbalanced and fall if not properly supported when removed from the primary boom tube.

Note: During removal, the overhead crane strap will need to be adjusted for proper balancing.

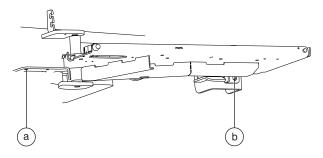
16 To remove the secondary boom extension cylinder, see 4-9, *How to Remove the Secondary Boom Extension Cylinder*.

4-8 Secondary Boom Lift Cylinder

How to Remove the Secondary Boom Lift Cylinder

AWARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.


Note: When removing a hose assembly or fitting, the O-ring (if equipped) on the fitting and/or the hose end must be replaced. All connections must be torqued to specification during installation. Refer to Section 2, *Hydraulic Hose and Fitting Torque Specifications*.

- 1 Lower the secondary boom to the stowed position.
- 2 Tag, disconnect, secure and remove the battery cables connecting the batteries. Remove battery fasteners and hooks from battery tray. Remove the batteries and store them in a safe and secure location away from the machine.

AWARNING

Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

- 3 Remove the retaining fasteners securing the upper and lower turntable covers from the turntable at the platform end. Remove the covers.
- 4 Remove the engine tray retaining fastener. Swing the engine tray out away from the machine.

- engine tray anchor hole engine tray retaining fastener
- 5 Locate the engine tray anchor hole at the pivot end of the engine tray.
- 6 Install the bolt that was just removed into the anchor hole to secure the engine tray from moving.

Crushing hazard. Failure to install the bolt into the engine tray to secure it from moving could result in death or serious injury.

7 Remove the fuel tank filler cap.

8 Using an approved hand-operated pump, drain the fuel tank into a suitable container. *Refer to Section 2, Specifications.*

ADANGER

Explosion and fire hazard. Engine fuels are combustible. Perform this procedure in an open, well-ventilated area away from heaters, sparks, flames and lighted tobacco. Always have an approved fire extinguisher within easy reach.

ADANGER

Explosion and fire hazard. When transferring fuel, connect a grounding wire between the machine and pump or container.

Note: Be sure to only use a hand-operated pump suitable for use with gasoline and diesel fuels.

- 9 Tag and disconnect the wire harness from the fuel level sending unit.
- 10 Tag, disconnect and plug the fuel hoses from the fuel tank.
- 11 Clean up any fuel that may have spilled.

12 Remove the fuel tank mounting fasteners. Carefully remove the fuel tank from the machine.

NOTICE

Component damage hazard. The fuel tank is plastic and may become damaged if allowed to fall.

Note: Clean the fuel tank and inspect for cracks and other damage before installing it onto the machine.

13 Tag, disconnect and plug the hydraulic hoses from the secondary boom lift cylinder. Cap the fitings on the cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 14 Place blocks under each end of the secondary boom lift cylinder for support.
- 15 Remove the pin retaining fasteners from the secondary boom lift cylinder rod-end pivot pin.
- 16 Use a soft metal drift to remove the pin.
- 17 Remove the pin retaining fastener from the secondary boom lift cylinder barrel-end pivot pin.

18 Use a soft metal drift to remove the pin.

19 Remove the secondary boom lift cylinder from the machine by pulling it through the platform end of the secondary boom.

AWARNING

Crushing hazard. The secondary boom lift cylinder could become unbalanced and fall if not properly supported when removed from the machine.

NOTICE

Component damage hazard. When removing the secondary boom lift cylinder from the machine, be careful not to damage the counterbalance valves at the barrel end of the cylinder.

NOTICE

Component damage hazard. Cables and hoses can be damaged if the cylinder is pulled across them.

4-9 Secondary Boom Extension Cylinder

The secondary boom extension cylinder extends and retracts the secondary boom extension tube. The secondary boom extension cylinder is equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure.

How to Remove the Secondary Boom Extension Cylinder

AWARNING

Bodily injury hazard. This procedure requires specific repair skills, lifting equipment and a suitable workshop. Attempting this procedure without these skills and tools could result in death or serious injury and significant component damage. Dealer service is strongly recommended.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, *Hydraulic Hose and Fitting Torque Specifications*.

Note: The secondary boom extension cylinder must be removed as an assembly with the cable tracks, cable track trays and cable track support tubes from the platform end of the secondary boom.

- 1 Raise the primary boom to a horizontal position.
- 2 Remove the access cover from the counterweight end of the secondary boom.

- 3 Remove the fasteners securing the cable track trays and cable track clamps to the secondary extension boom.
- 4 Remove the external snap rings from the extension cylinder rod-end pivot pin.
- 5 Use a soft metal drift to remove the pin.
- 6 Remove the access cover from the platform end of the secondary boom.
- 7 Working at the platform end, place blocks under the barrel end of the secondary boom extension cylinder for support.
- 8 Remove the barrel-end retaining fasteners.
- 9 Using a suitable lifting device, lift the extension cylinder to clear the saddle blocks
- 10 Support and slide the extension cylinder out of the boom extension and place it on a structure capable of supporting it.

AWARNING

Crushing hazard. The secondary boom extension cylinder could become unbalanced and fall if not properly supported when removed from the machine.

MOTICE

Component damage hazard. When removing the secondary boom extension cylinder from the machine, be careful not to damage the counterbalance valves at the barrel end of the cylinder.

NOTICE

Component damage hazard. Cables and hoses can be damaged if the cylinder is pulled across them. 11 Tag, disconnect and plug the secondary boom extension cylinder hydraulic hoses. Cap the fittings on the cylinder.

AWARNING

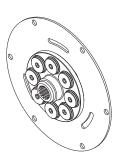
Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

12 Remove the cable track fasteners and cable track support tubes from the extension cylinder.

NOTICE

Component damage hazard. Be careful not to damage the secondary boom retract limit switch when installing the cylinder assembly into the secondary boom. Secure the roller arm to the switch body during assembly.

Engines


5-1 RPM Adjustment

Refer to Maintenance Procedure C-5, Check and Adjust the Engine RPM.

5-2 Flex Plate

The flex plate acts as a coupler between the engine and the pump. It is bolted to the engine flywheel and has a splined center to drive the pump.

Type "B" flex plates combines the pump coupler, as part of the flex plate, which is installed onto the engine flywheel.

Type "B" (flexplate with coupler combined)

ENGINES

How to Remove the Flex Plate

Note: Perform this procedure with the engine off and cool to the touch.

- 1 Open the engine side turntable cover.
- 2 Tag and disconnect the battery cables from the battery(s).

AWARNING

Electrocution/burn hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

3 Tag and disconnect the wiring plug at the electronic displacement controller (EDC), located on the drive pump.

Deutz TD2011L04i models:

- 4 Tag and disconnect the wiring from the bell housing.
- 5 Remove the U-bolt from the exhaust flex pipe at the muffler.

ACAUTION Burn hazard. Hot engine parts can cause severe burns.

- 6 Remove the muffler bracket retaining fasteners from bell housing. Remove the muffler and bracket assembly from the engine.
- 7 Support the drive pump with an appropriate lifting device. Remove all of the remaining bell housing engine fasteners.
- 8 Carefully pull the pump and bell housing assembly away from the engine and secure it from moving.

Component damage hazard. Hoses can be damaged if they are kinked orpinched

9 Remove the flex plate mounting fasteners, and remove the flex plate from the engine flvwheel.

Deutz TD 2.9 models:

- 10 Tag and disconnect the wiring from the bell housing.
- 11 Support the drive pump with an appropriate lifting device. Remove all of the bell housing engine fasteners.

ENGINES

12 Carefully pull the pump and bell housing assembly away from the engine and secure it from moving.

NOTICE

Component damage hazard. Hoses can be damaged if they are kinked or pinched

13 Remove the flex plate mounting fasteners, and remove the flex plate from the engine flywheel.

Perkins 804D models:

- 14 Tag and disconnect the wiring from the bell housing.
- 15 Remove the exhaust pipe clamp at the muffler.
- **ACAUTION** Burn hazard. Hot engine parts can cause severe burns.
- 16 Remove the muffler mounting bracket fasteners. Remove the muffler and bracket assembly from the engine.
- 17 Remove the hose clamps from the air cleaner elbow and the engine intake manifold.
- 18 Remove the air cleaner mounting bracket fasteners. Remove the air cleaner and bracket assembly from the engine.
- 19 Support the drive pump with an appropriate lifting device. Remove all of the remaining bell housing to engine fasteners.

20 Carefully pull the pump and bell housing assembly away from the engine and secure it from moving.

NOTICE

Component damage hazard. Hoses can be damaged if they are kinked orpinched

21 Remove the flex plate mounting fasteners, and remove the flex plate from the engine flywheel.

Perkins 404F-22T models:

- 22 Tag and disconnect the wiring from the bell housing.
- 23 Remove the fasteners supporting the muffler assembly from the bell housing.
- **ACAUTION** Burn hazard. Hot engine parts can cause severe burns.
- 24 Support the drive pump with an appropriate lifting device. Remove all of the bell housing to engine fasteners.
- 25 Carefully pull the pump and bell housing assembly away from the engine and secure it from moving.

NOTICE

Component damage hazard. Hoses can be damaged if they are kinked or pinched

23 Remove the flex plate mounting fasteners, and remove the flex plate from the engine flywheel.

ENGINES

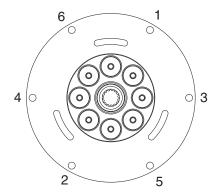
Continental model:

- 27 Tag and disconnect the wire harness from the oxygen sensor.
- 28 Remove the exhaust pipe heat shield fasteners from the top of the muffler.
- **ACAUTION** Burn Hazard. Hot engine parts can cause severe burns.
- 29 Remove the muffler retainer bracket fasteners.
- 30 Remove the muffler fasteners securing the muffler to the exhaust manifold. Remove the muffler from the bracket.
- 31 Remove the relay housing from the muffler mount. Do not disconnect the relays.
- 32 Disconnect and remove the ECM from the muffler mount.
- 33 Close the shutoff valve on the Liquid Petroleum Gas (LPG) tank by turning it clockwise (if equipped).
- 34 Unbolt the EPR valve from the muffler mount. Leave the hoses attached to the EPR valve.

- 35 Remove the muffler mount.
- 36 Support the drive pump with an appropriate lifting device. Remove all of pump plate mounting fasteners.
- 37 Carefully pull the pump and bell housing assembly away from the engine and secure it from moving.
- NOTICE Component damage hazard. Hoses can be damaged if they are kinked or pinched.
- 38 Remove the flex plate mounting fasteners.

 Remove the flex plate from the engine flywheel.

How to Install the Flex Plate


1 Install the flex plate onto the engine flywheel with the raised spline towards the pump. Apply Loctite® removable thread sealant to the mounting screws.

Note: Torque the flex plate mounting bolts in two stages.

Continental model: Torque the flex plate mounting bolts in sequence to 20.8 ft-lbs / 28 Nm.

Deutz models: Torque the flex plate mounting bolts in sequence to 28 ft-lbs / 38 Nm. Then torque the flex plate mounting bolts in sequence to 40 ft-lbs / 54 Nm.

Perkins models: Torque the flex plate mounting bolts in sequence to 28 ft-lbs / 38 Nm. Then torque the flex plate mounting bolts in sequence to 40 ft-lbs / 54 Nm.

Perkins, Deutz and Continental Flex Plate

- 2 Install the pump coupler onto the pump shaft with the set screw toward the pump. Leave the appropriate gap between coupler and pump end plate for your engine.
- 3 Apply Loctite[®] removable thread sealant to the pump coupler set screw. Torque the set screw to 61 ft-lbs / 83 Nm.
- 4 Install the pump onto the pump mounting plate. Apply Loctite® removable thread sealant to the pump retaining fasteners. Torque the pump retaining fasteners to 57 ft-lbs / 77 Nm.

NOTICE

Component damage hazard. Do not force the drive pump during installation or the flex plate teeth may become damaged.

- 5 Install the pump coupler onto the pump shaft with the set screw toward the pump. Leave the appropriate gap between coupler and pump end plate for your engine.
- 6 Install the pump and pump mounting plate assembly onto the engine. Apply Loctite[®] removable thread sealant to the mounting screws.
 - 1 Install the pump and bell housing assembly.

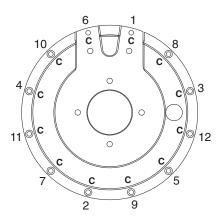
Deutz models: Torque the bell housing mounting bolts labeled "C" in sequence to 28 ft-lbs / 38 Nm. Then torque the bell housing mounting bolts labeled "C" in sequence to 40 ft-lbs / 54 Nm.

Perkins 804D models: Torque the bell housing mounting bolts in sequence to 28 ft-lbs / 38 Nm and then to 49 ft-lbs / 66 Nm.

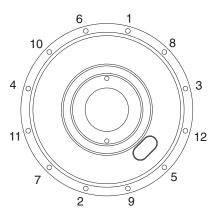
Perkins 404F models:Torque the bell housing mounting bolts labeled "B" in sequence to 28 ft-lbs / 38 Nm and the mounting bolts labeled "A" to 49 ft-lbs / 66 Nm. Then torque the bell housing mounting bolts labeled "B" in sequence to 40 ft-lbs / 54 Nm and the mounting bolts labeled "A" to 70 ft-lbs / 95 Nm.

Continental model:

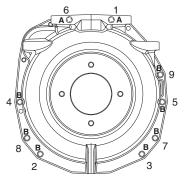
Torque the pump mounting plate fasteners in sequence to 23 ft-lbs / 31.2 Nm.

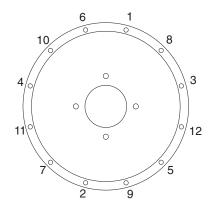

NOTICE

Component damage hazard. When installing the pump, do not force the pump coupler into the flexplate or damage to the pump shaft seal may occur.


NOTICE

4 - 54


Component damage hazard. Do not force the drive pump during installation or the flex plate teeth may become damaged.


Deutz Pump Mounting Plate

Perkins 804D Pump Mounting Plate

Perkins 404F-22T Pump Mounting Plate

Continental Pump Mounting Plate

ENGINES

5-3 Engine Fault Codes

Refer to Repair Section 5, Fault Codes.

5-4 How to Access Perkins 404F Engine Regeneration Service

Machines equipped with Perkins 404F-22T Diesel engines will have a regeneration mode that should run automatically when soot levels in the Diesel Particulate Filter (DPF) reach specified levels.

How to Check the DPF Soot Percentage

- 1 Turn the key switch to the on position.
- 2 Press the plus button + and the minus button at the same time to access the Operator Status menu.
- 3 Press the enter button with twice to display DPF SOOT PCT (0-150%).

How to Force or Inhibit DPF Regeneration

There are three modes available for DPF regeneration.

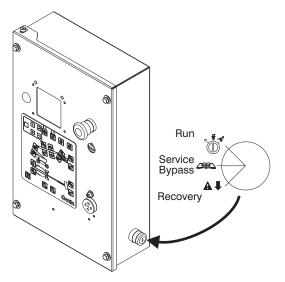
The default, AUTOMATIC MODE, allows for ECU controlled regeneration. The machine powers up in this mode.

INHIBIT DPF REGENERATION will disable regeneration. In this mode the exhaust temperatures will not raise due to regeneration. The mode will remain active until an ignition key cycle (power cycle) or FORCE DPF REGENERATION is selected. This mode will be indication by an LCD message while active.

ENGINES

FORCE DPF REGENERATION allow the operator to force active regeneration of the DPF. When Force mode is active the engine will enter regeneration once the engine reaches specific levels of DPF soot loading, exhaust temperature, and other constraints defined by the engine manufacturer. This mode will be indicated by an LCD message while active.

- 4 Turn the key switch to the on position.
- 5 Press the plus button + and the minus button at the same time to access the Operator Status menu.
- 6 Press the enter button until FORCE DPF REGENERATION or INHIBIT DPF REGENERATION is displayed.
- 7 Press the plus button + or the minus button to select YES to change the regeneration mode from the default automatic mode. The selection will automatically return to NO. The LCD will display the current mode while it is Inhibited or Forced.
- Note: The LCD messages REGEN FORCED and WARNING HIGH EXHAUST SYSTEM TEMP will be displayed while a regeneration mode is running. No service is required.
- Note: The LCD message REGEN INHIBITED is displayed while in the Inhibit Regeneration mode is active. To exit this mode, push in the Red emergency stop button. Restart the engine.


Ground Controls

6-1 Service Bypass/Recovery Key Switch

The ground control box contains two key switches. The main key switch towards the top of the control box is for selection of ground or platform controls. The key switch at the bottom of the control box is the Service Bypass/Recovery key switch. Service Bypass and Recovery modes are only intended for certain circumstances and are not part of normal machine operation. If either the Service Bypass or the Recovery function is required, this indicates there may be faults with the machine. Contact trained personnel immediately.

Service Bypass is used for a platform out-ofenvelope condition and certain service situations.

Recovery is only to be used as a last attempt to lower the platform when the operator in the platform is unable to do so, system failure or in emergency situations.

Service Bypass/ Recovery Key Switch

How to Use the Service Bypass Mode

ADANGER

Tip-over hazard. Operating the machine outside of the operating envelope while in Service Bypass mode will result in death or serious injury if proper operating procedures and safety precautions are not followed. Do not use this mode if you are not trained and familiar with the operating envelope of the machine.

Note: Before using the Service Bypass mode, make sure you understand the fault code or issue affecting the operation of the machine to be sure the use of service bypass is required.

The Service Bypass mode will allow the platform to be manually leveled when an out-of-envelope condition exists. In the event that the platform angle is greater than 10° from level, the boom angle and platform level functions are disabled. Use of the Service Bypass mode will allow the platform to be manually adjusted to within the normal operating envelope, ±4.5°. Only auxiliary power can be used to correct an out of level platform fault.

- 1 Turn the engine off.
- 2 Turn the main key switch to ground controls. Remove the key from the main key switch and insert the key into the service bypass/recovery key switch.

Note: The main key switch must remain in the ground control position.

3 Turn the service bypass/recovery key switch to the service bypass position.

GROUND CONTROLS

4 Using auxiliary power, operate the platform level toggle switch to level the platform.

Note: Only the auxiliary power unit can be used to correct an out of level platform fault.

- 5 Turn the service bypass/recovery key switch to the run position.
- 6 Remove the key from the service bypass/ recovery key switch and insert the key into the main key switch.

Note: If the Service Bypass function has been used, there may be faults with the machine. Check the LCD screen on the ground control box for machine faults, then contact trained service personnel.

How to Use the Recovery Mode

Recovery is only to be used as a last attempt to lower the platform when the operator in the platform is unable to do so, system failure or in emergency situations.

AWARNING

Bodily injury hazard. When using recovery mode, the platform may not fully lower to the ground when the recovery mode is completed. Failure to use only suitable equipment and/or practices to allow the operator to safely exit the platform could result in death or serious injury.

AWARNING

Bodily injury hazard. Platform leveling is not active when using recovery mode. The platform could reach high out-of-level conditions when using this mode. The operator will need to secure themself to the platform to prevent falling injury.

The Recovery mode allows the platform to be lowered in the event the operator in the platform is unable to lower the platform using the platform controls, system failure or emergency situations. The recovery sequence will automatically retract the primary boom and then lower the primary boom using the auxiliary power unit to allow the operator at the platform controls to exit the platform.

- 1 Turn the main key switch to the off position. Remove the key from the main key switch and insert the key into the service bypass/recovery key switch.
- 2 Turn and hold the service bypass/recovery key switch to the recovery position. The switch must be held in the recovery position.
- Result: The auxiliary power unit will turn on and the boom will begin the following recovery sequence.
 - · The primary boom will retract
 - The primary boom will lower

Note: The key switch must be held in the recovery position until the recovery sequence is complete or until the operator in the platform can safely exit the platform.

Note: If any boom safety limit switches are faulty, the boom will only retract and not lower and the operator will need to be recovered from that point.

Note: If the Recovery function has been used, this may indicate there may be faults with the machine. Tag and remove the machine from service until the fault has been corrected by trained personnel.

GROUND CONTROLS

6-2 Circuit Boards

The ground control box (TCON) is the communication and operations center for the machine. The ground control box contains two key switches. The key switch towards the top of the control box is for selection of ground or platform controls. The key switch at the bottom of the control box is the Service Bypass key switch. It is used to correct an out-of-level platform. If the machine trips an envelope safety switch, the operator at the ground controls can turn and hold the Service Bypass key switch in the RECOVER position, which will automatically retract the boom and lower the platform to the ground.

The ground control box contains a replaceable membrane decal with touch sensitive buttons for various machine functions. The ground control box also contains two printed circuit boards:

The LCD (Liquid Crystal Display) circuit board is mounted to the inside of the control box lid which controls the LCD display screen or CAN Gateway if equipped with a Tier IV engine.

The **TCON** circuit board is the main circuit board for the machine. There are relays on the ECM circuit board that can be replaced. All operating parameters and configuration of options for the machine are stored in the ECM memory.

Note: The ECM circuit board inside the ground control box (TCON) cannot be replaced by itself. If the ECM circuit board is faulty and needs to be replaced, contact the Genie Industries Service Department.

Note: When an ECM circuit board is replaced, the proportional valves will need to be calibrated. See 1-3, How to Calibrate a Joystick.

How to Determine the Revision Level

- 1 Turn the key switch to ground controls and pull out the red Emergency Stop buttons to the on position at both platform and ground controls.
- Result: The revision level of the TCON will. appear in the LCD display window.

How to Remove the LCD Display Screen Circuit Board

- 1 Push in the red Emergency Stop button to the off position at both the ground and platform controls.
- 2 Remove the ground control box lid fasteners. Open the control box lid.

AWARNING Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

OTICE

Component damage hazard. Electrostatic discharge (ESD) can damage printed circuit board components. Maintain firm contact with a metal part of the machine that is grounded at all times when handling printed circuit boards OR use a grounded wrist strap.

- 3 Carefully disconnect the ribbon cable from the LCD display circuit board.
- 4 Remove the LCD display circuit board retaining fasteners.
- 5 Carefully remove the LCD display circuit board from the ground control box lid.

GROUND CONTROLS

6-3 Membrane Decal

The membrane decal is a special decal that consists of a decal with an electronic membrane on the backside. The membrane contains touch sensitive areas that, when pushed, activates the machine functions. The membrane buttons activate machine functions similar to toggle switches, but do not have any moving parts.

How to Replace the Membrane Decal

- 1 Turn the key switch at to the off position.
- 2 Push in the red Emergency Stop button to the off position at both the ground and platform controls.
- 3 Remove the ground control box lid fasteners. Open the control box lid.
- 4 Tag and disconnect the two ribbon cables from the membrane decal at the ECM circuit board.

AWARNING

Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

NOTICE

Component damage hazard. Electrostatic discharge (ESD) can damage printed circuit board components. Maintain firm contact with a metal part of the machine that is grounded at all times when handling printed circuit boards OR use a grounded wrist strap.

- 5 Carefully remove the membrane decal from the control box lid while guiding the ribbon cables out of the control box lid.
- 6 Remove any decal adhesive from the control box lid with a mild solvent.

NOTICE

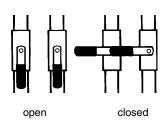
Component damage hazard.
Certain solvents can damage LCD display. Do not allow any solvent to come in contact with the LCD display screen.

- 7 Install the new membrane decal onto the control box lid while guiding the ribbon cables through the control box lid.
- 8 Connect the ribbon cables to the ECM circuit board.
- 9 Close the control box lid and install the retaining fasteners.

Hydraulic Pumps

7-1 Function Pump

How to Remove the Function Pump


Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, *Hydraulic Hose and Fitting Torque Specifications*.

1 Models without hydraulic tank shutoff valves: Remove the drain plug from the hydraulic tank and completely drain the tank into a suitable container. Refer to Section 2, Specifications.

Models with hydraulic tank shutoff valves: Close the two hydraulic tank valves located at the hydraulic tank.

NOTICE

Component damage hazard. The engine must not be started with the hydraulic tank shutoff valves in the closed position or component damage will occur. If the tank valves are closed, remove the key from the key switch and tag the machine to inform personnel of the condition.

2 Tag, disconnect and plug the hydraulic hoses at the function pump. Cap the fittings on the pump.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

3 Remove the pump mounting fasteners. Carefully remove the pump.

NOTICE

Component damage hazard. Be sure to open the two hydraulic tank valves (if equipped) and prime the pump after installing the pump. See 7-2, *How to Prime the Pump*.

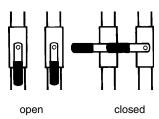
HYDRAULIC PUMPS

7-2 **Drive Pump**

The drive pump is a bi-directional variable displacement piston pump. The pump output is controlled by the electronic displacement controller (EDC), located on the pump. Any internal service to the pump should only be performed at an authorized Sauer-Danfoss service center. Contact the Genie Industries Service Department to locate your local authorized service center.

How to Remove the Drive Pump

Component damage hazard. The work area and surfaces where this procedure will be performed must be clean and free of debris that could get into the hydraulic system and cause severe component damage. Dealer service is recommended.


Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

1 Disconnect the wire harness at the electronic displacement controller (EDC), located on the drive pump.

2 Models without hydraulic tank shutoff valves: Remove the drain plug from the hydraulic tank and completely drain the tank into a suitable container. Refer to Section 2, Specifications.

Models with hydraulic tank shutoff valves: Close the two hydraulic tank valves located at the hydraulic tank.

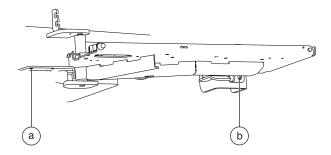
Component damage hazard. The engine must not be started with the hydraulic tank shutoff valves in the closed position or component damage will occur. If the tank valves are closed, remove the key from the key switch and tag the machine to inform personnel of the condition.

3 Tag, disconnect and plug the hydraulic hoses at the drive and function pumps. Cap the fittings on the pumps.

AWARNING Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

HYDRAULIC PUMPS

- 4 Support the pumps with a suitable lifting device and remove the two drive pump mounting fasteners.
- 5 Carefully pull the drive pump out until the pump coupler separates from the flex plate.
- 6 Remove the drive pump assembly from the machine.


NOTICE

Component damage hazard. Be sure to open the two hydraulic tank valves and prime the pump after installing the pump.

Note: Before installing the pump, verify proper pump coupler spacing. See 5-2, *Flex Plate*.

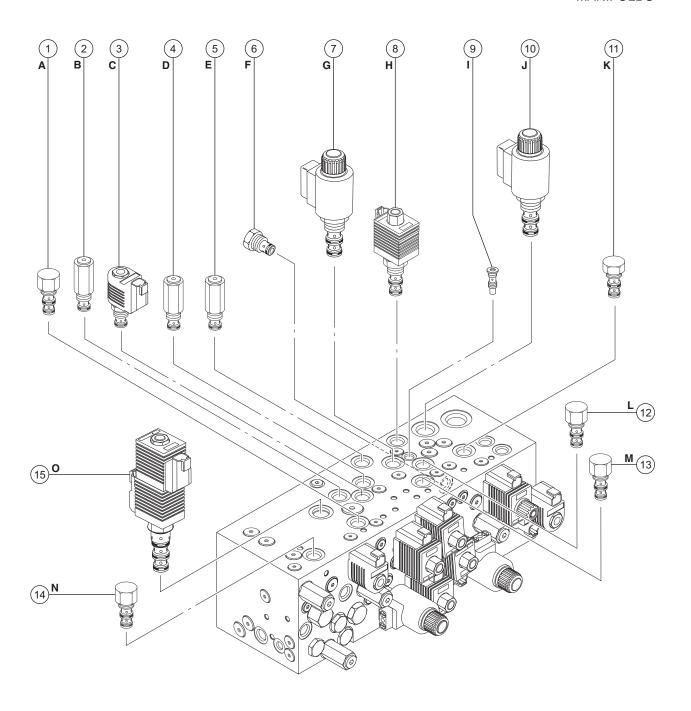
How to Prime the Pump

- 1 Connect a 0 to 600 psi / 0 to 50 bar pressure gauge to the test port on the drive pump.
- 2 Remove the engine tray retaining fastener. Swing the engine tray out away from the machine.

- a engine tray anchor hole
- b engine tray retaining fastener
- 3 Locate the engine tray anchor hole at the pivot end of the engine tray.

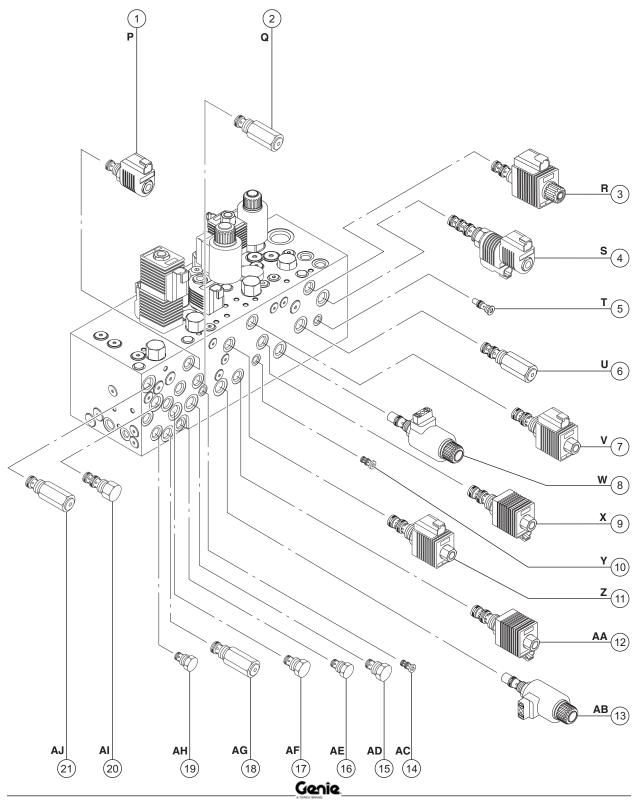
4 Install the bolt removed in step 4 into the anchor hole to secure the engine tray from moving.

Crushing hazard. Failure to install the bolt into the engine tray to secure it from moving could result in death or serious injury.


- 5 Deutz and Perkins models: Tag and disconnect the engine wiring harness from the fuel shutoff solenoid at the injector pump.
 - **GM and Ford models:** Close the valve on the LPG tank. Disconnect the hose from the tank. Move the fuel select switch to the LPG position.
- 6 Have another person crank the engine with the starter motor for 15 seconds, wait 15 seconds, then crank the engine an additional 15 seconds or until the pressure reaches 320 psi / 22 bar.
- 7 Deutz and Perkins models: Connect the engine wiring harness to the fuel solenoid.
 - **GM, Ford and Continental models:** Connect the LPG hose to the LPG tank and open the valve on the tank.
- 8 Start the engine from the ground controls and check for hydraulic leaks.

Manifolds

8-1 Function Manifold - View 1


The function manifold is located next to the ground control box.

Index No.	S Description	chematic Item	Function	Torque
	•	Δ		
1	Differential sensing valve	A	up/extend and down/retract	. 30-35 ft-lbs / 41-47 Nm
2	Relief valve, 2500 psi / 172 bar	B	. Secondary boom up	. 20-25 ft-lbs / 27-34 Nm
3	Solenoid valve, 2 position 2 way .	C	. Secondary boom up circuit	. 20-25 ft-lbs / 27-34 Nm
4	Relief valve, 2500 psi / 172 bar	D	. Secondary boom down	. 20-25 ft-lbs / 27-34 Nm
5	Relief valve, 1300 psi / 89.6 bar	E	. Primary boom down	. 20-25 ft-lbs / 27-34 Nm
6	Flow regulator valve, 0.1 gpm / 0.38 L/min	F	. Bleeds off check valves in differential sensing circuits to tank	. 20-25 ft-lbs / 27-34 Nm
7	Proportional solenoid valve	G	Primary boom up/down	. 30-35 ft-lbs / 41-47 Nm
8	Solenoid valve, 2 position 3 way .	H	. Primary boom retract	. 33-37 ft-lbs / 45-50 Nm
9	Check valve	1	. Differential sensing circuit, primary boom extend/retract	8-10 ft-lbs / 11-14 Nm
10	Solenoid valve, 2 position 3 way .	J	. Primary boom extend	. 50-55 ft-lbs / 68-75 Nm
11	Differential sensing valve	K	. Turntable rotate left/right	. 30-35 ft-lbs / 41-47 Nm
12	Differential sensing valve	L	. Primary boom extend/retract	. 30-35 ft-lbs / 41-47 Nm
13	Differential sensing valve	M	. Primary boom up/down	. 30-35 ft-lbs / 41-47 Nm
14	Priority flow regulator valve, 3 gpm / 11.4 L/min	N	. Controls flow to the oscillate and platform manifolds	. 30-35 ft-lbs / 41-47 Nm
15	Solenoid valve, 3 position 4 way .	0	. Secondary boom extend/retract	. 33-37 ft-lbs / 45-50 Nm

8-2 Function Manifold - View 2

Index No.	S Description	chematic Item	Function	Torque
1	Solenoid valve, 2 position 2 way .	P	Secondary boom extend circuit	20-25 ft-lbs / 27-34 Nm
2	Relief valve, 2600 psi / 179 bar	Q	Secondary boom extend	20-25 ft-lbs / 27-34 Nm
3	Proportional solenoid valve	R	Turntable rotate left/right	20-25 ft-lbs / 27-34 Nm
4	Solenoid valve, 3 position 4 way.	S	Turntable rotate left/right	26-30 ft-lbs / 35-41 Nm
5	Check valve	T	Differential sensing circuit, turntable rotate	8-10 ft-lbs / 11-14 Nm
6	Relief valve, 1300 psi / 89.6 bar	U	Primary boom extend	30-35 ft-lbs / 41-47 Nm
7	Solenoid valve, 2 position 3 way .	V	Primary boom up	33-37 ft-lbs / 45-50 Nm
8	Proportional solenoid valve	W	Primary boom extend/retract	30-35 ft-lbs / 41-47 Nm
9	Solenoid valve, 2 position 3 way .	X	Primary boom down	33-37 ft-lbs / 45-50 Nm
10	Check valve	Y	Differential sensing circuit, primary boom up/down	8-10 ft-lbs / 11-14 Nm
11	Solenoid valve, 2 position 3 way.	Z	Secondary boom up	33-37 ft-lbs / 45-50 Nm
12	Solenoid valve, 2 position 3 way .	AA	Secondary boom down	33-37 ft-lbs / 45-50 Nm
13	Proportional solenoid valve	AB	Secondary boom extend/retract	30-35 ft-lbs / 41-47 Nm
14	Check valve	AC	Differential sensing circuit, secondary boom extend/retract	8-10 ft-lbs / 11-14 Nm
15	Check valve, 5 psi / 0.34 bar	AD	Blocks flow from auxiliary pump #1 to function pump #1	30-35 ft-lbs / 41-47 Nm
16	Check valve, 5 psi / 0.34 bar	AE	Blocks flow from function pump #1 to auxiliary pump #1	20-25 ft-lbs / 27-34 Nm
17	Check valve, 5 psi / 0.34 bar	AF	Blocks flow from auxiliary pump #2 to function pump #2	20-25 ft-lbs / 27-34 Nm
18	Relief valve, 3000 psi / 207 bar	AG	Oscillate and platform manifold system relief	20-25 ft-lbs / 27-34 Nm
19	Check valve, 5 psi / 0.34 bar	AH	Blocks flow from function pump #2 to auxiliary pump #2	20-25 ft-lbs / 27-34 Nm
20	Differential sensing valve, 150 psi / 10.3 bar	AI	Meters flow to functions	30-35 ft-lbs / 41-47 Nm
21	Relief valve, 3200 psi / 220.6 bar	AJ	Boom functions system relief	30-35 ft-lbs / 41-47 Nm

8-3 Valve Adjustments -Function Manifold

How to Adjust the System Relief Valve

Note: Perform this procedure with the boom in the stowed position.

- 1 Locate the boom retracted limit switch (LSP1RO) limit switch on the outside of the primary boom at the pivot end of the primary boom.
- 2 Tag and disconnect the wire harness from the limit switch, and install a wire jumper between pins 1 and 2 of the limit switch connector. Place another wire jumper between pins 3 and 4 of the limit switch connector.
- 3 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the PTEST port on the function manifold.
- 4 Start the engine from the ground controls.
- 5 Press and release the rpm select button until the engine changes to high idle.
- 6 Simultaneously push and hold the function enable/high speed button and the primary boom retract button with the primary boom fully retracted. Observe the reading on the pressure gauge. Refer to Section 2, *Specifications*.

- 7 Turn the engine off. Use a wrench to hold the relief valve and remove the cap (item AJ).
- 8 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

- 9 Repeat steps 4 through 8 confirm the relief valve pressure.
- 10 Remove the pressure gauge.
- 11 Remove the wire jumpers from the limit switch connector.
- 12 Securely install the LSP1RO pig tail into the wire harness.

How to Adjust the Primary Boom Down Relief Valve

Note: Perform this procedure with the boom in the stowed position.

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the Ls port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Press and release the rpm select button until the engine changes to high idle.
- 4 Raise the primary boom approximately 5 feet / 1.5 m.

5 Place a 4 x 4 inch / 10 x 10 cm block on the primary boom rest pad. Lower the primary boom onto the block.

AWARNING Crushing hazard. Keep hands clear of the block when lowering the primary boom.

- 6 Simultaneously push and hold the function enable/high speed button and the primary boom down button. Observe the pressure reading on the pressure gauge. Refer to Section 2, Specifications.
- 7 Turn the engine off. Use a wrench to hold the relief valve and remove the cap (item E).
- 8 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

- 9 Start the engine and repeat steps 6 through 8 to confirm the relief valve pressure.
- 10 Start the engine and raise the primary boom approximately 12 inches / 30 cm. Remove the block and lower the primary boom to the stowed position.
- 11 Turn the engine off and remove the pressure gauge.

How to Adjust the Primary Boom **Extend Relief Valve**

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the LS port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Raise the boom to a horizontal position. Turn the engine off.
- 4 Locate the boom extended limit switch (LSP1EO) on the outside of the primary boom.
- 5 Remove the limit switch mounting bracket retaining fasteners.
- 6 Pull the limit switch and bracket assembly out of the boom tube and let it hang down.
- 7 Start the engine from the ground controls and press and release the rpm select button until the engine changes to high idle.
- 8 Simultaneously push and hold the function enable/high speed button and the primary boom extend button with the primary boom fully extended. Observe the reading on the pressure gauge. Refer to Section 2, Specifications.
- 9 Turn the engine off. Use a wrench to hold the relief valve and remove the cap (item U).

10 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

- 11 Repeat steps 7 through 8 to confirm relief valve pressure.
- 12 Start the engine and fully retract the primary boom. Turn the engine off.
- 13 Install the limit switch and bracket assembly to the primary boom.
- 14 Remove the pressure gauge.

How to Adjust the Secondary Boom Up Relief Valve

- 1 Remove the cover retaining fasteners from the secondary boom end cover. Remove the cover from the machine.
- 2 Locate the wire connector for secondary boom limit switch LSS2AO. Disconnect the connector.

Note: The secondary boom limit switch LSS2AO is the upper limit switch located on the inside of the riser plate at the engine side of the machine.

3 Install a jumper wire between pins 3 and 4 of the LSS2AO Deutsch connector on the wire harness end.

- 4 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the LS port on the function manifold.
- 5 Start the engine from the ground controls.
- 6 Simultaneously push and hold the function enable/high speed button and the secondary boom up/extend button and fully raise the secondary boom.
- 7 Continue holding the function enable/high speed button and the secondary boom up/ extend button while observing the reading on the pressure gauge. Refer to Section 2, Specifications.
- 8 Turn the engine off. Use a wrench to hold the relief valve and remove the cap (item B).
- 9 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

- 10 Repeat steps 5 through 7 to confirm relief valve pressure.
- 11 Remove the pressure gauge.
- 12 Remove the jumper wire from LSS2AO limit switch connector. Connect the limit switch to the wire harness.
- 13 Install the secondary boom end cover and tighten the retaining fasteners.

How to Adjust the Secondary Boom Down Relief Valve

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the Ls port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Press and release the rpm select button until the engine changes to high idle.
- 4 Raise the secondary boom approximately 12 inches / 30 cm.
- 5 Place a 4 x 4 inch / 10 x 10 cm block on the secondary boom rest pad. Lower the secondary boom onto the block.

AWARNING

Crushing hazard. Keep hands clear of the block when lowering the secondary boom.

- 6 Simultaneously push and hold the function enable/high speed button and the secondary boom down button. Observe the reading on the pressure gauge. Refer to Section 2, Specifications.
- 7 Turn the engine off. Use a wrench to hold the relief valve and remove the cap (item D).

8 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

- 9 Start the engine and repeat step to confirm relief valve pressure.
- 10 Start the engine and raise the secondary boom approximately 12 inches / 30 cm. Remove the block and lower the secondary boom to the stowed position.
- 11 Turn the engine off and remove the pressure gauge.

How to Adjust the Secondary Boom Extend Relief Valve

Note: Perform this procedure with the secondary boom fully raised.

- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the LS port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Simultaneously push and hold the function enable/high speed button and the secondary boom up/extend button with the secondary boom fully raised and extended. Observe the pressure reading on the pressure gauge. Refer to Section 2, Specifications.

Part No. 1258748

MANIFOLDS

- 4 Turn the engine off. Use a wrench to hold the relief valve and remove the cap (item Q).
- 5 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

- 6 Repeat steps 2 through 5 to confirm relief valve pressure.
- 7 Remove the pressure gauge.

How to Adjust the Platform Manifold Relief Valve

Note: Perform this procedure with the boom in the stowed position.

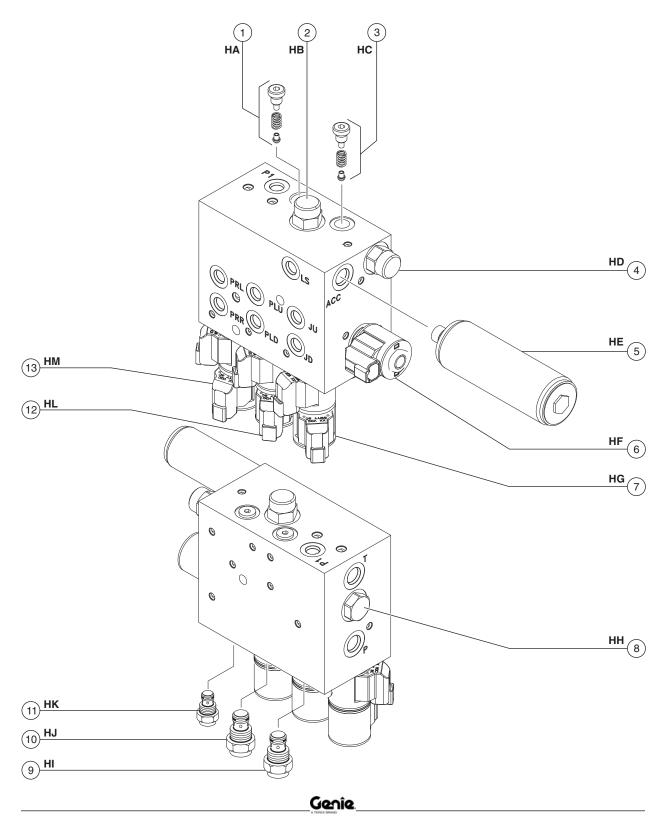
- 1 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the PTEST 2 port on the function manifold.
- 2 Start the engine from the ground controls.
- 3 Simultaneously push and hold the function enable/high speed button and the jib boom down button with the jib boom fully lowered. Observe the reading on the pressure gauge. Refer to Section 2, *Specifications*.

- 4 Turn the engine off. Use a wrench to hold the relief valve and remove the cap (item AG).
- 5 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

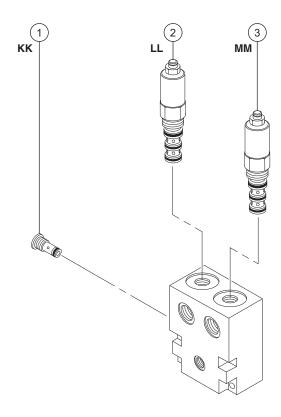
- 6 Repeat steps 2 through 3 to confirm relief valve pressure.
- 7 Remove the pressure gauge.



This page intentionally left blank.

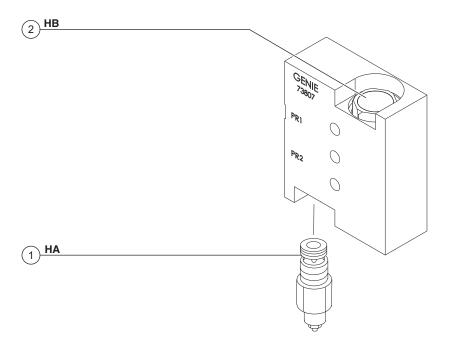
8-4 Platform Manifold

The platform Manifold is mounted to the platform mounting weldment.


Index No.	Description	Schematic Item	Function	Torque
1	Check valve, 5 psi	HA	Platform load sense/level circuit	12-14 ft-lbs / 16-19 Nm
2	Differential sensing valve, N.C.	HB	Directs flow to functions	19-21 ft-lbs / 26-29 Nm
3	Check valve, 5 psi	HC	Jib load sense/up/down circuit	12-14 ft-lbs / 16-19 Nm
4	Flow control valve	HD	Bleeds off differential valve to tank.	19-21 ft-lbs / 26-29 Nm
5	Accumulator, 500 psi / 34.5 bar	HE	Hydraulic dampening	23 ft-lbs / 31 Nm
6	Proportional solenoid valve, 2 position 2 way	HF		19-21 ft-lbs / 26-29 Nm
7	Proportional solenoid valve 3 position 5 way	HG	Jib up/down circuit	19-21 ft-lbs / 26-29 Nm
8	Check valve, 10 psi	HH		19-21 ft-lbs / 26-29 Nm
9	Compensator valve	HI	Jib boom differential sensing circuit	.33-37 ft-lbs / 45-50 Nm
10	Compensator valve	HJ	Platform level diff. sensing circuit	33-37 ft-lbs / 45-50 Nm
11	Pressure compensation valve .	HK	Platform rotate diff. sensing circuit .	19-21 ft-lbs / 26-29 Nm
12	Proportional solenoid valve 3 position 5 way	HL	Platform level up/down circuit	19-21 ft-lbs / 26-29 Nm
13	Proportional solenoid valve 3 position 5 way	HM	Platform rotate left/right circuit	19-21 ft-lbs / 26-29 Nm

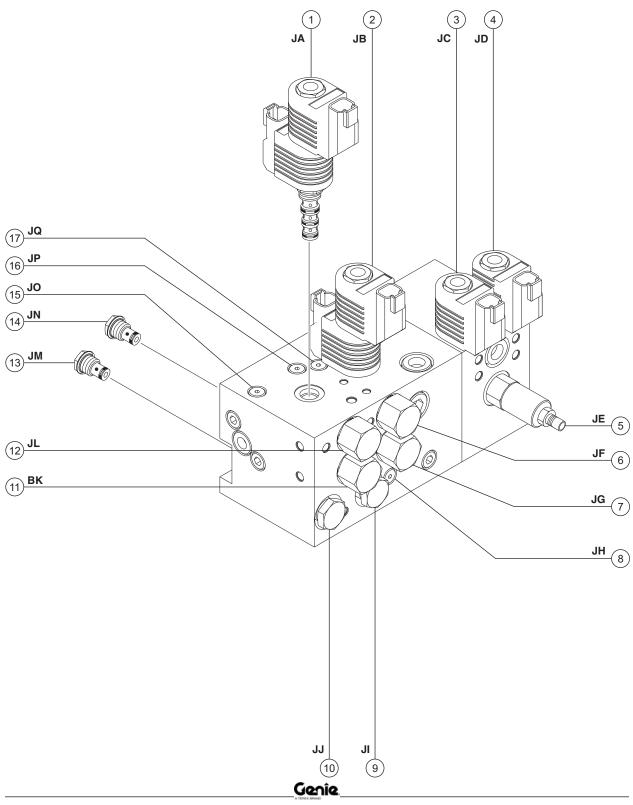
8-5 **Turntable Rotation Manifold**

The turntable rotation manifold is mounted to the turntable rotation motor located in the boom storage compartment.


Index		Schematic			
	No.	Description	Item	Function	Torque
	1	Shuttle valve, 2 position 3 way	. KK	Turntable rotation brake release	10-13 ft-lbs / 14-18 Nm
	2	Counterbalance valve	LL	Turntable rotate right	35-40 ft-lbs / 47-54 Nm
	3	Counterbalance valve	. MM	Turntable rotate left	35-40 ft-lbs / 47-54 Nm

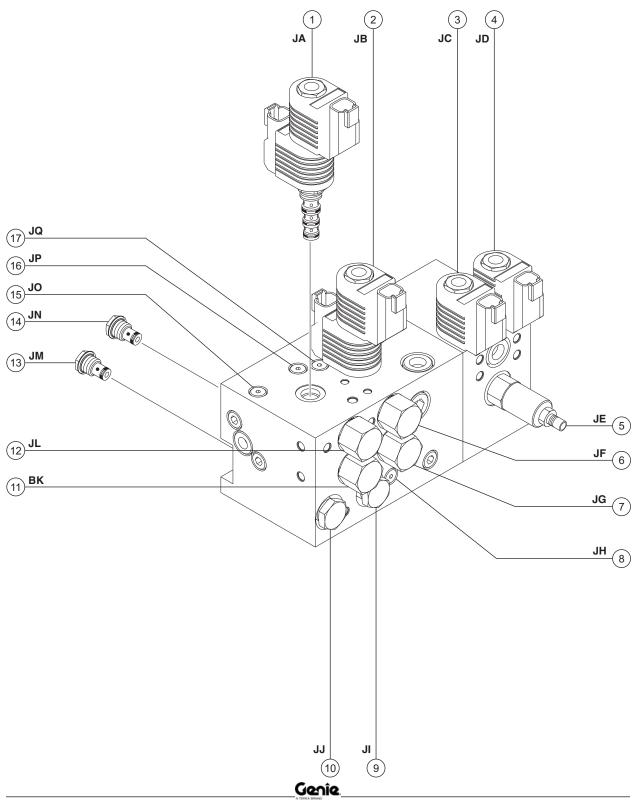
8-6 Platform Rotate Manifold

The platform rotate manifold is mounted on the platform rotator.


Index	So	hematic	Function		
No.	Description	Item	Function	Torque	
1	Counterbalance valve	HA	. Turntable rotation brake release	35-40 ft-lbs / 47-54 Nm	
2	Counterbalance valve	HB	. Turntable rotate left	35-40 ft-lbs / 47-54 Nm	

8-7 Two Wheel Steer and Oscillate Manifold

The Two Wheel Steer and Oscillate manifold is mounted inside the drive chassis at the square-end of the machine.


Index No.	Se Description	chematic Item	Function	Torque
1	Solenoid valve, 3 position 4 way	JA	Steer left/right, yellow side steer cylinder	26-30 ft-lbs / 35-41 Nm
2	Solenoid valve, 3 position 4 way	JB	Steer left/right, blue side steer cylinder	26-30 ft-lbs / 35-41 Nm
3	Solenoid valve, 2 position 3 way	JC	Oscillate cylinder, blue side	26-30 ft-lbs / 35-41 Nm
4	Solenoid valve, 2 position 3 way	JD	Oscillate cylinder, yellow side	26-30 ft-lbs / 35-41 Nm
5	Relief valve, 750 to 860 psi / 51.71 to 59.3 bar	JE	Oscillate circuit	20-25 ft-lbs / 27-34 Nm
6	Flow regulator valve, 1.5 gpm / 5.7 L/min	JF	Blue side steer cylinder extend circuit	20-25 ft-lbs / 27-34 Nm
7	Flow regulator valve, 1.0 gpm / 3.8 L/min	JG	Blue side steer cylinder retract circuit	20-25 ft-lbs / 27-34 Nm
8	Check valve	JH	Load sensing circuit, blue side steer cylinder retract	8-10 ft-lbs / 11-14 Nm
9	Check valve	JI	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
10	Check valve	JJ	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm

This list continues on the next page.

Two Wheel Steer and Oscillate Manifold, continued

Index No.	Description	Schematic Item	Function	Torque
11	Flow regulator valve, 1.5 gpm / 5.7 L/min	JK	Yellow side steer cylinder extend circuit	20-25 ft-lbs / 27-34 Nm
12	Flow regulator valve, 1.0 gpm / 3.8 L/min	JL	Yellow side steer cylinder retract circuit	20-25 ft-lbs / 27-34 Nm
13	Check valve, 65 psi / 4.5 bar	JM	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
14	Check valve, 65 psi / 4.5 bar	JN	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
15	Check valve	JO	Load sensing circuit, yellow side steer cylinder retract	8-10 ft-lbs / 11-14 Nm
16	Check valve	JP	Load sensing circuit, yellow side steer cylinder extend	8-10 ft-lbs / 11-14 Nm
17	Check valve	JQ	Load sensing circuit, blue side steer cylinder extend	8-10 ft-lbs / 11-14 Nm

How to Adjust the Oscillate Relief Valve

Note: Perform this procedure with the boom in the stowed position.

Note: Perform this procedure with the engine running at high RPM.

Note: This procedure will require two people.

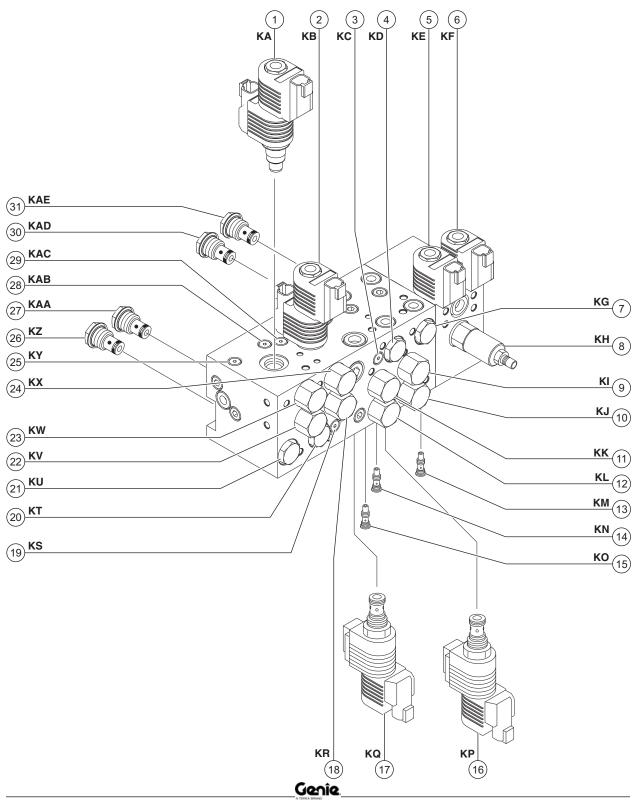
- 1 Remove the drive chassis cover from the square-end of the machine.
- 2 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the test port on the two wheel steer and oscillate manifold.
- 3 Start the engine from the platform controls.
- 4 Press down the foot switch and manually activate one of the oscillate limit switches. Hold the switch in the activated position and observe the reading on the pressure gauge. Refer to Section 2, *Specifications*.
- 5 Turn the engine off. Use a wrench to hold the relief valve and remove the cap (item BE, before SN 1291 or JE, after SN 1290).

6 Adjust the internal hex socket. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.

AWARNING

Tip-over hazard. Do not adjust the relief valve higher than specified.

- 7 Repeat steps 3 through 4 to confirm relief valve pressure.
- 8 Remove the pressure gauge.
- 9 Install the drive chassis cover.

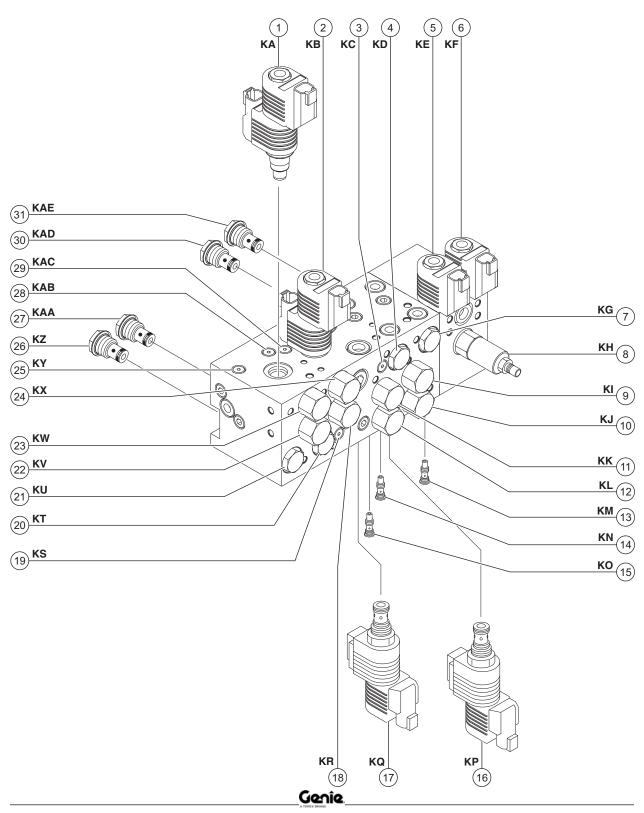

This page intentionally left blank.

8-8 Four Wheel Steer and Oscillate Manifold

The Four Wheel Steer and Oscillate manifold is mounted inside the drive chassis at the square-end of the machine.

Index No.	Secription	chematic Item	Function	Torque
1	Solenoid valve, 3 position 4 way	KA	Steer left/right, square end yellow side steer cylinder	26-30 ft-lbs / 35-41 Nm
2	Solenoid valve, 3 position 4 way .	KB	Steer left/right, square end blue side steer cylinder	26-30 ft-lbs / 35-41 Nm
3	Check valve	KC	Load sensing circuit, circle end yellow side steer cylinder retract	8-10 ft-lbs / 11-14 Nm
4	Check valve, 65 psi / 4.5 bar	KD	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
5	Solenoid valve, 2 position 3 way	KE	Oscillate cylinder, blue side	26-30 ft-lbs / 35-41 Nm
6	Solenoid valve, 2 position 3 way	KF	Oscillate cylinder, yellow side	26-30 ft-lbs / 35-41 Nm
7	Check valve, 65 psi / 4.5 bar	KG	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
8	Relief valve, 750 to 860 psi / 51.71 to 59.3 bar	KH	Oscillate circuit	20-25 ft-lbs / 27-34 Nm
9	Flow regulator valve, 1.5 gpm / 5.7 L/min	KI	Circle end, blue side steer cylinder extend circuit	20-25 ft-lbs / 27-34 Nm
10	Flow regulator valve, 1.0 gpm / 3.8 L/min	KJ	Circle end, blue side steer cylinder retract circuit	20-25 ft-lbs / 27-34 Nm
11	Flow regulator valve, 1.0 gpm / 3.8 L/min	KK	Circle end, yellow side steer cylinde retract circuit	
12	Flow regulator valve, 1.5 gpm / 5.7 L/min	KL	Circle end, yellow side steer cylinde extend circuit	
13	Check valve	KM	Load sensing circuit, circle end blue side steer cylinder retract	8-10 ft-lbs / 11-14 Nm
14	Check valve	KN	Load sensing circuit, circle end blue side steer cylinder extend	8-10 ft-lbs / 11-14 Nm
15	Check valve	KO	Load sensing circuit, circle end yellow side steer cylinder extend	8-10 ft-lbs / 11-14 Nm

This list continues on the next page.



Four Wheel Steer and Oscillate Manifold, continued

Index No.	See Description	chematic Item	Function	Torque
16	Solenoid valve, 3 position 4 way .	KP	Steer left/right, circle end blue side steer cylinder	26-30 ft-lbs / 35-41 Nm
17	Solenoid valve, 3 position 4 way .	KQ	Steer left/right, circle end yellow side steer cylinder	26-30 ft-lbs / 35-41 Nm
18	Flow regulator valve, 1.0 gpm / 3.8 L/min	KR	Square end, left side steer cylinder retract circuit	20-25 ft-lbs / 27-34 Nm
19	Check valve	KS	Load sensing circuit, square end blue side steer cylinder retract	20-25 ft-lbs / 27-34 Nm
20	Check valve, 65 psi / 4.5 bar	KT	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
21	Check valve, 65 psi / 4.5 bar	KU	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
22	Flow regulator valve, 1.5 gpm / 5.7 L/min	KV	Square end, yellow side steer cylinder extend circuit	20-25 ft-lbs / 27-34 Nm
23	Flow regulator valve, 1.0 gpm / 3.8 L/min	KW	Square end, yellow side steer cylinder retract circuit	26-30 ft-lbs / 35-41 Nm
24	Flow regulator valve, 1.5 gpm / 5.7 L/min	KX	Square end, blue side steer cylinder extend circuit	20-25 ft-lbs / 27-34 Nm
25	Check valve	KY	Load sensing circuit, square end yellow side steer cylinder retract	8-10 ft-lbs / 11-14 Nm
26	Check valve, 65 psi / 4.5 bar	KZ	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
27	Check valve, 65 psi / 4.5 bar	KAA	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
28	Check valve	KAB	Load sensing circuit, square end yellow side steer cylinder extend	8-10 ft-lbs / 11-14 Nm
29	Check valve	KAC	Load sensing circuit, square end blue side steer cylinder extend	8-10 ft-lbs / 11-14 Nm
30	Check valve, 65 psi / 4.5 bar	KAD	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm
31	Check valve, 65 psi / 4.5 bar	KAE	Prevents steer cylinder from moving when not steering	20-25 ft-lbs / 27-34 Nm

This list continues on the next page.

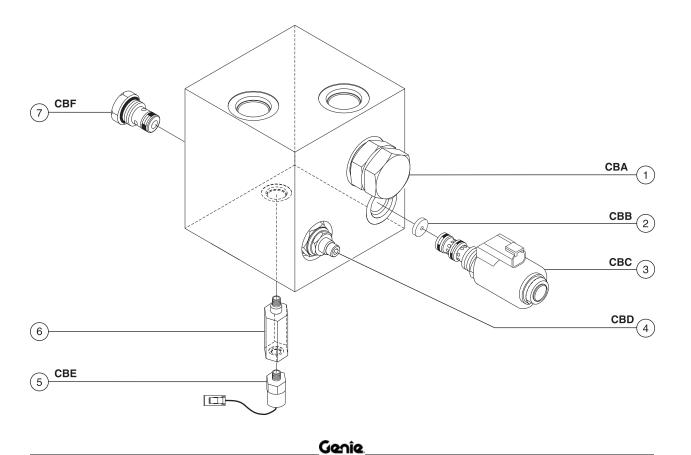
Genîe

How to Adjust the Oscillate **Relief Valve**

Note: Perform this procedure with the boom in the stowed position.

Note: This procedure will require two people.

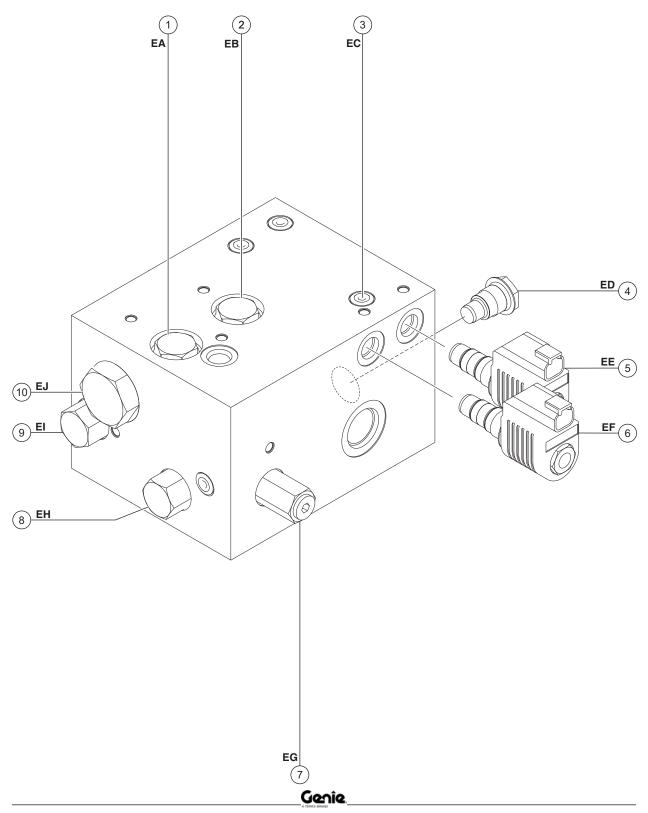
- 1 Remove the drive chassis cover from the square-end of the machine.
- 2 Connect a 0 to 5000 psi / 0 to 350 bar pressure gauge to the test port on the steer/oscillate manifold.
- 3 Start the engine from the platform controls.
- 4 Press down the foot switch and manually activate one of the oscillate limit switches. Hold the switch in the activated position and observe the reading on the pressure gauge. Refer to Section 2, Specifications.
- 5 Turn the engine off. Use a wrench to hold the relief valve and loosen the jam nut. (item CH, before SN 1301 or item KH, after SN 1300).
- 6 Adjust the stud with a hex wrench. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure. Install the relief valve cap.


AWARNING Tip-over hazard. Do not adjust the relief valve higher than specified.

- 7 Repeat steps 3 through 4 to confirm relief valve pressure.
- 8 Remove the pressure gauge.
- 9 Install the drive chassis cover.

8-9
Oil Diverter Manifold Components (welder option)

The oil diverter manifold is mounted to the hydraulic generator located in the engine compartment.


Index No.	Description	Schematic Item	Function	Torque
1	Pilot Operated Directional valve 2 position 3 way	,	Activates generator 8	80-90 ft-lbs / 108-122 Nm
2	Orifice disc, 0.031 inch / 0.79 mm	CBB	Delays shift to drive	. 35-40 ft-lbs / 47-54 Nm
3	Solenoid valve, 2 position 3 way	/ CBC	Pilot valve to diverter	. 35-40 ft-lbs / 47-54 Nm
4	Relief valve, 280 psi @ 3.5 gpm / 19.3 bar @ 13.2 L/min	CBD	Charge pressure circuit	. 35-40 ft-lbs / 47-54 Nm
5			Generator relay switch	
6	Connector fitting			11 ft-lbs / 15 Nm
7	Check valve	CBF	Prevents oil flowing into generator	. 35-40 ft-lbs / 47-54 Nm

8-10 Traction Manifold, 2WD

The 2WD traction manifold is mounted inside the drive chassis at the circle-end of the machine.

Index		Schematic	Formation	T
No.	Description	Item	Function	Torque
1	Check valve, 5 psi / 0.34 bar	EA	Drive motor anti-cavitation	30-35 ft-lbs / 41-47 Nm
2	Check valve, 5 psi / 0.34 bar	EB	Drive motor anti-cavitation	30-35 ft-lbs / 41-47 Nm
3	Orifice, 0.031 in / 0.79 mm	EC	Brake and 2-speed circuit	
4	Check valve	ED	Keeps brakes released in case of temporary loss of charge pressure .	20-25 ft-lbs / 27-34 Nm
5	Solenoid valve, 2 position 3 way	EE	Brake release	26-30 ft-lbs / 35-41 Nm
6	Solenoid valve, 2 position 3 way	EF	2-speed drive motor shift	26-30 ft-lbs / 35-41 Nm
7	Relief valve, 280 psi / 19.3 bar	EG	Charge pressure circuit	20-25 ft-lbs / 27-34 Nm
8	Shuttle valve, 3 position 3 way	EH	Charge pressure circuit that directs hot oil out of low pressure side of drive pump	30-35 ft-lbs / 41-47 Nm
9	Bi-directional flow control valve,		P. P.	
	4.5 gpm / 17 L/min	El	Equalizes pressure on both sides of divider/combiner valve EJ	30-35 ft-lbs / 41-47 Nm
10	Flow divider/combiner valve	EJ	Controls flow to drive motors in forward and reverse 90	0-100 ft-lbs / 122-136 Nm

8-11 Valve Adjustments, 2WD Traction Manifold

How to Adjust the Charge Pressure Relief Valve

Note: Perform this procedure with the hydraulic oil temperature at 100°F to 150°F / 38°C to 65.5°C.

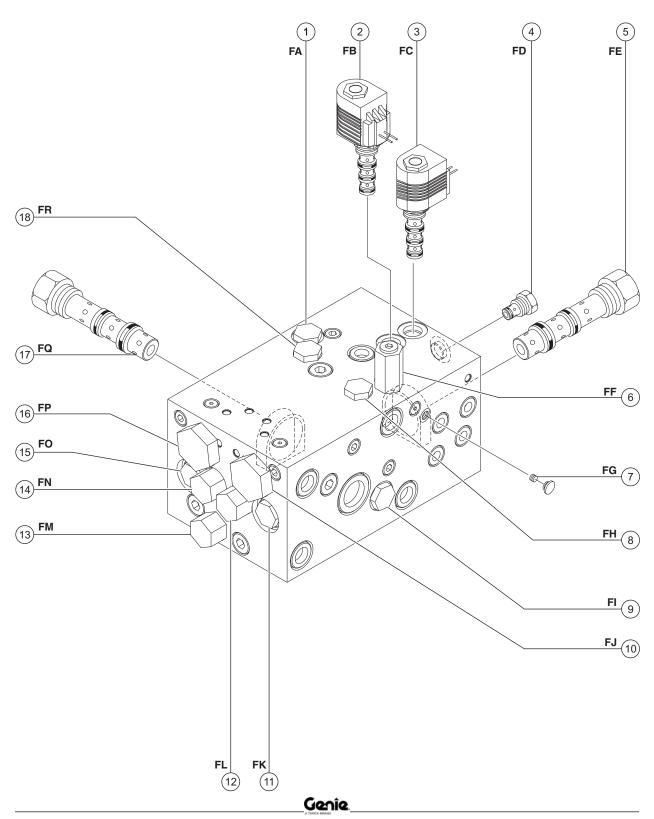
Note: This will take two people to perform this procedure.

- 1 Connect a 0 to 600 psi / 0 to 50 bar pressure gauge to the test port on the drive pump.
- 2 Start the engine from the ground controls.
- 3 Press the function enable/high rpm select button (rabbit symbol) position. Note the reading on the pressure gauge.
- 4 Turn the engine off.
- 5 Remove the pressure gauge from the drive pump. Connect the gauge to the test port located on the drive manifold.
- 6 Use a wrench to hold the charge pressure relief valve and remove the cap (item EG).
- 7 Start the engine from the platform controls.
- 8 Move rpm select switch to high rpm (rabbit symbol).

9 Begin driving the machine forward at a medium speed while one person monitors the pressure gauge. Continue driving until the pressure stabilizes.

Note: The pressure reading should be approximately 40 psi / 2.8 bar less than the pressure reading taken in step 3.

- 10 If it is not, stop the machine and adjust the internal hex socket on the pressure relief valve (item EG) either up or down. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure.
- 11 Drive the machine forward and check the pressure.
- 12 Continue making small adjustments until the pressure reading on the gauge is approximately 40 psi / 2.8 bar less than the pressure reading taken in step 3.
- 13 Turn the engine off and remove the pressure gauge.



This page intentionally left blank.

8-12 Traction Manifold, 4WD

The 4WD traction manifold is mounted inside the drive chassis at the circle-end of the machine.

Index	So	chematic		
No.	Description	Item	Function	Torque
1	Check valve, 5 psi / 0.34 bar	FA	. Drive motor anti-cavitation	30-35 ft-lbs / 41-47 Nm
2	Solenoid valve, 2 position 3 way	FB	. 2-speed drive motor shift	26-30 ft-lbs / 35-41 Nm
3	Solenoid valve, 2 position 3 way	FC	. Brake release	26-30 ft-lbs / 35-41 Nm
4	Check valve	FD	. Keeps brakes released in case of temporary loss of charge pressure .	20-25 ft-lbs / 27-34 Nm
5	Shuttle valve, 3 position 3 way	FE	. Charge pressure circuit that directs hot oil out of low pressure side of drive pump	30-35 ft-lbs / 41-47 Nm
6	Relief valve, 280 psi / 19.3 bar	FF	. Charge pressure circuit	20-25 ft-lbs / 27-34 Nm
7	Orifice, 0.030 in / 0.76 mm	FG	. Brake and 2-speed circuit	
8	Check valve	FH	. Drive motor anti-cavitation	20-25 ft-lbs / 27-34 Nm
9	Check valve	FI	. Drive motor anti-cavitation	30-35 ft-lbs / 41-47 Nm
10	Flow divider/combiner valve	FJ	. Controls flow to square end drive motors in forward and reverse	0-100 ft-lbs / 122-136 Nm
11	Check valve, 5 psi / 0.34 bar	FK	. Drive motor anti-cavitation	20-25 ft-lbs / 27-34 Nm
12	Bi-directional flow control valve, 2 gpm / 7.6 L/min	FL	. Equalizes pressure on both sides of divider/combiner valve FJ	30-35 ft-lbs / 41-47 Nm
13	Bi-directional flow control valve, 2 gpm / 7.6 L/min	FM	. Equalizes pressure on both sides of divider/combiner valve FQ	30-35 ft-lbs / 41-47 Nm
14	Bi-directional flow control valve, 2 gpm / 7.6 L/min	FN	. Equalizes pressure on both sides of divider/combiner valve FP	30-35 ft-lbs / 41-47 Nm
15	Check valve	FO	. Drive motor anti-cavitation	20-25 ft-lbs / 27-34 Nm
16	Flow divider/combiner valve	FP	. Controls flow to circle end drive motors in forward and reverse90	0-100 ft-lbs / 122-136 Nm
17	Flow divider/combiner valve	FQ	. Controls flow to divider/ combiner valves FJ and FP 90	0-100 ft-lbs / 122-136 Nm
18	Check valve	FR	. Drive motor anti-cavitation	20-25 ft-lbs / 27-34 Nm

8-13 Valve Adjustments, 4WD Traction Manifold

How to Adjust the Charge Pressure Relief Valve

Note: Perform this procedure with the hydraulic oil temperature at 100°F to 150°F / 38°C to 65.5°C.

Note: This will take two people to perform this procedure.

- 1 Connect a 0 to 600 psi / 0 to 50 bar pressure gauge to the test port on the drive pump.
- 2 Start the engine from the ground controls.
- 3 Press the function enable/high rpm select button (rabbit symbol) position. Note the reading on the pressure gauge.
- 4 Turn the engine off.
- 5 Remove the pressure gauge from the drive pump. Connect the gauge to the test port located on the drive manifold.
- 6 Use a wrench to hold the charge pressure relief valve and remove the cap (item FF).
- 7 Start the engine from the platform controls.
- 8 Move rpm select switch to high rpm (rabbit symbol).

9 Begin driving the machine forward at a medium speed while one person monitors the pressure gauge. Continue driving until the pressure stabilizes.

Note: The pressure reading should be approximately 40 psi / 2.8 bar less than the pressure reading taken in step 3.

- 10 If it is not, stop the machine and adjust the internal hex socket on the pressure relief valve (item FF) either up or down. Turn it clockwise to increase the pressure or counterclockwise to decrease the pressure.
- 11 Drive the machine forward and check the pressure.
- 12 Continue making small adjustments until the pressure reading on the gauge is approximately 40 psi / 2.8 bar less than the pressure reading taken in step 3.
- 13 Turn the engine off and remove the pressure gauge.

8-14 Valve Coils

How to Test a Coil

A properly functioning coil provides an electromagnetic force which operates the solenoid valve. Critical to normal operation is continuity within the coil. Zero resistance or infinite resistance indicates the coil has failed.

Since coil resistance is sensitive to temperature, resistance values outside specification can produce erratic operation. When coil resistance decreases below specification, amperage increases. As resistance rises above specification, voltage increases.

While valves may operate when coil resistance is outside specification, maintaining coils within specification will help ensure proper valve function over a wide range of operating temperatures.

AWARNING Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

Note: If the machine has been in operation, allow the coil to cool at least 3 hours before performing this test.

- 1 Tag and disconnect the wiring from the coil to be tested.
- 2 Test the coil resistance using a multimeter set to resistance (Ω) . Refer to the Valve Coil Resistance Specification table.
- Result: If the resistance is not within the adjusted specification, plus or minus 10%, replace the coil.

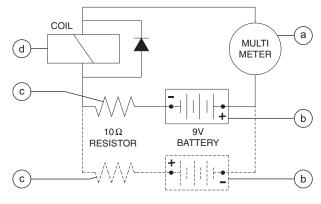
Valve Coil Resistance **Specifications**

Note: The following coil resistance specifications are at an ambient temperature of 68°F / 20°C. As valve coil resistance is sensitive to changes in air temperature, the coil resistance will typically increase or decrease by 4% for each 18°F / 20°C that your air temperature increases or decreases from 68°F/20°C.

Valve coil resistance specifications	
Proportional solenoid valve, 12V DC (schematic items G, W and AB)	4.8 Ω
Proportional solenoid valve, 12V DC (schematic items R)	9 Ω
3 position 4 way solenoid valve, 12V DC (schematic items BA, BB, CA, CB, CP, CQ, GB, GP and GQ)	9 Ω
3 position 4 way solenoid valve, 10V DC (schematic items O and S)	6.3 Ω
2 position 2 way solenoid valve, 10V DC (schematic items J)	3.3 Ω
2 position 2 way solenoid valve, 10V DC (schematic items C and P)	6.3 Ω
2 position 3 way solenoid valve, 10V DC (schematic items H, V, X, Z, AA, EE and EF)	6.3 Ω
2 position 3 way solenoid valve, 12V DC (schematic items BC, BD, CE, CF, FB and FC)	9 Ω

How to Test a Coil Diode

Properly functioning coil diodes protect the electrical circuit by suppressing voltage spikes. Voltage spikes naturally occur within a function circuit following the interruption of electrical current to a coil. Faulty diodes can fail to protect the electrical system, resulting in a tripped circuit breaker or component damage.


AWARNING Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

- 1 Test the coil for resistance. See 8-14, How to Test a Coil.
- 2 Connect a 10Ω resistor to the negative terminal of a known good 9V DC battery. Connect the other end of the resistor to a terminal on the coil.

Resistor, 10Ω Genie part number

27287

Note: The battery should read 9V DC or more when measured across the terminals.

- multimeter а
- 9V DC battery b
- 10Ω resistor С

Note: Dotted lines in illustration indicate a reversed connection as specified in step 6

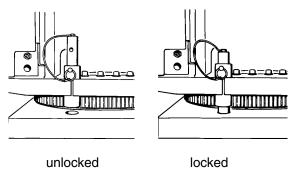
3 Set a multimeter to read DC current.

Note: The multimeter, when set to read DC current, should be capable of reading up to 800 mA.

- 4 Connect the negative lead to the other terminal on the coil.
- 5 Momentarily connect the positive lead from the multimeter to the positive terminal on the 9V DC battery. Note and record the current reading.
- 6 At the battery or coil terminals, reverse the connections. Note and record the current reading.
- O Result: Both current readings are greater than 0 mA and are different by a minimum of 20%. The coil is good.
- Result: If one or both of the current readings are 0 mA, or if the two current readings do not differ by a minimum of 20%, the coil and/or its internal diode are faulty and the coil should be replaced.

Genîe

Turntable Rotation Components


9-1 Turntable Rotation Assembly

How to Remove a Turntable Rotation Assembly

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, *Hydraulic Hose and Fitting Torque Specifications*.

Note: Perform this procedure with the platform between the circle-end tires and with the machine on a firm, level surface.

1 Secure the turntable from rotating with the turntable rotation lock pin.

- 2 Remove the ground controls side fixed turntable cover
- 3 Tag, disconnect the hydraulic hoses from the turntable rotation motor. Cap the fittings on the motor.

- 4 Attach a lifting strap from an overhead crane or other suitable lifting device to the lifting eye on the turntable rotation assembly.
- 5 Remove the turntable rotator mounting bolts and remove the turntable rotation assembly from the machine.
- 6 Repeat steps 3 through 5 for the other turntable rotation assembly.

ADANGER

Tip-over hazard. If the turntable rotation lock pin is not properly installed, machine stability is compromised and the machine could tip over when the drive hub is removed from the machine, which will result in death or serious injury.

AWARNING

Crushing hazard. The drive hub could become unbalanced and fall if not properly supported by the overhead crane or lifting device when removed from the machine.

Note: When installing a turntable rotation assembly, the rotation gear backlash must be adjusted. See 9-1, *Adjust the Turntable Rotation Gear Backlash*.

TURNTABLE ROTATION COMPONENTS

How to Adjust the Turntable Rotation Gear Backlash

The turntable rotation drive hub is mounted on an adjustable plate that controls the gap between the rotation motor pinion gear and the turntable bearing ring gear.

Note: Perform this procedure with the platform between the circle-end tires and with the machine on a firm, level surface.

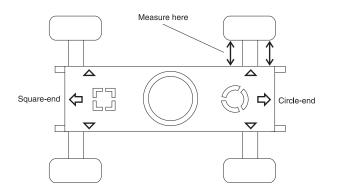
- 1 Secure the turntable from rotating with the turntable rotation lock pin.
- 2 Loosen the backlash pivot plate mounting fasteners.
- 3 Push the backlash pivot plate towards the turntable as far as possible (this will push the rotation gear into the turntable bearing ring gear).
- 4 Loosen the lock nut on the adjustment bolt.
- 5 Turn the adjustment bolt clockwise until it contacts the backlash pivot plate.
- 6 Turn the adjustment bolt ¹/₂ turn counterclockwise. Tighten the lock nut on the adjustment bolt.

- 7 Rotate the backlash pivot plate away from the turntable until it contacts the adjustment bolt. Torque the mounting fasteners on the backlash pivot plate to specification. Refer to Section 2, Specifications.
- 8 Rotate the turntable through an entire rotation. Check for tight spots that could cause binding. Readjust if necessary.

10-1 Steer Sensors

The steer sensor measures steer angle and communicates that information to the ground controls ECM. The steer sensor on the ground controls side of the machine at the square end acts as the lead sensor. The other three sensors follow the position, or steer angle, of the lead sensor. There is a steer sensor mounted to the top of each upper yoke pivot pin.

Note: If the square-end steering function becomes inoperative, switch to circle-end steer mode and the ground controls side circle-end steer sensor will become the lead sensor.


Note: This procedure will require a minimum of two people.

How to Measure the Tire Alignment

- 1 Start the engine from the platform controls.
- 2 Press down the foot switch.

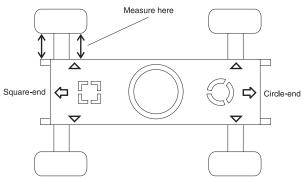
Measure the circle-end tires:

3 Press the square-end steer mode button.

Axle Components

- 4 Measure the distance between the inside of one circle-end tire and the chassis side plate on both sides of the axle.
- Result: Both measurements should be the same to indicate that the tires are parallel with the chassis.

Note: If the measurements are different or if a tire is not parallel with the chassis, the steer sensor of that tire will need to be adjusted. See *How to Adjust a Steer Sensor*.

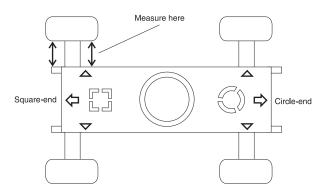

5 Repeat step 4 for the other circle-end tire.

Measure the square-end tires:

- 6 Press the circle-end steer mode button.
- 7 Measure the distance between the inside of one square-end tire and the chassis side plate on both sides of the axle.
- Result: Both measurements should be the same to indicate that the tires are parallel with the chassis.

Note: If the measurements are different or if a tire is not parallel with the chassis, the steer sensor of that tire will need to be adjusted. See *How to Adjust a Steer Sensor*.

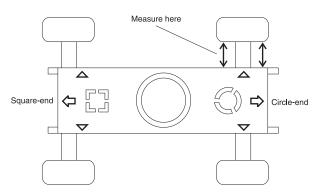
8 Repeat step 4 for the other square-end tire.



How to Adjust a Steer Sensor

- 1 Start the engine from the platform controls.
- 2 Press down the foot switch and push the engine idle select button until the engine switches to high rpm.

Square-end steer sensors:


- 3 At the platform controls, press the circle-end steer mode button.
- 4 Locate the steer sensor on top of the yoke pivot pin.
- 5 Loosen the steer sensor cover retaining fasteners. Do not remove them.
- 6 Rotate the steer sensor cover either clockwise or counterclockwise. Measure the distance between the inside of tire and the chassis side plate on both sides of the axle.

- 7 Repeat step 4 until the tire is parallel with the chassis.
- 8 Tighten the steer sensor cover fasteners.
- 9 Repeat steps 2 through 6 for the other squareend steer sensor.

Circle-end steer sensors:

- 10 At the platform controls, press the square-end steer mode button.
- 11 Locate the steer sensor on top of the yoke pivot pin.
- 12 Loosen the steer sensor cover retaining fasteners. Do not remove them.
- 13 Rotate the steer sensor cover either clockwise or counterclockwise. Measure the distance between the inside of tire and the chassis side plate on both sides of the axle.

- 14 Repeat step 4 until the tire is parallel with the chassis.
- 15 Tighten the steer sensor cover fasteners.
- 16 Repeat steps 9 through 13 for the other circleend steer sensor.
- 17 At the platform controls, press the four-wheel steer mode button. Measure the distance between the inside of the tire and the chassis side plate on both sides of the axle on each tire.
- 18 If any tire is not parallel, repeat the process beginning with step 3.

How to Calibrate the Steer Sensors

If a steer sensor reaches the limit of travel before a tire is adjusted parallel to the chassis, the steer sensor must be calibrated. This procedure will reestablish a center position on the steer sensor.

Note: Perform this procedure with the machine in the stowed position.

Note: This procedure will require two people.

- 1 Start the engine from the platform controls.
- 2 Press down the foot switch.
- 3 Choose a steer mode based on the tire that needs alignment.

Note: If a circle-end tire cannot be aligned, press the square-end steer mode button. If a square-end tire cannot be aligned, press the circle-end steer mode button.

- 4 Loosen the steer sensor cover retaining fasteners. Do not remove them.
- 5 Rotate the steer sensor cover either clockwise or counterclockwise to bring the tire as close to alignment as possible.
- 6 Turn off the engine.
- 7 Press and hold the enter button on the ground control panel while pulling out the ground controls red Emergency Stop button to the on position. Hold the enter button for approximately 5 seconds and then release it.
- 8 Enter sensor calibration mode by pressing the buttons at the ground controls in the following sequence: + + +.

- 9 Use the button to scroll through the menu until the appropriate steer sensor is displayed. Choose from:
 - RESET BLUE END BLUE SIDE STEER SENSOR
 RESET YELLOW END BLUE SIDE STEER SENSOR
 RESET YELLOW END YELLOW SIDE STEER SENSOR,
 RESET BLUE END YELLOW SIDE STEER SENSOR.
 - Press the button to select YES, then press the button.
- 10 Exit the sensor calibration mode and turn the keyswitch to the off position.
- 11 Rotate the steer sensor to the opposite limit of travel.
- 12 Using a voltmeter set to DC voltage, probe the back of the steer sensor electrical connector at pins B and C.
- 13 Turn the keyswitch on at the ground controls. Rotate the sensor slowly until the voltage reading is between 2.4 to 2.5V DC. The alarm at the ground control box should sound.
- 14 Turn the keyswitch to platform controls. Start the engine from the platform controls.
- 15 Press down the foot switch.
- 16 Rotate the steer sensor cover to adjust the tire alignment. Measure the distance between the inside of the tire and the chassis side plate on both sides of the axle.
- 17 Repeat step 14 until the tire is parallel with the chassis.
- 18 Tighten the steer sensor cover fasteners.

How to Adjust the Oscillate Limit Switches

ADANGER

Tip-over hazard. Failure to perform this procedure on a firm, level surface could compromise the stability of the machine and could cause the machine to tip over which will result in death or serious injury.

Note: Perform this procedure with the machine on a firm, level surface that is free of obstructions. Use a digital level to confirm.

Note: This procedure will require two people.

- 1 Lower the boom to the stowed position.
- 2 Remove the drive chassis cover from the circle-end of the machine.
- 3 Remove the oscillate axle limit switch mounting fasteners. Remove the limit switches.

Note: The oscillate axle limit switches are located inside the drive chassis above the axle.

- 4 Place a digital level on the turntable rotate bearing plate.
- 5 Start the engine and level the drive chassis. Press down the foot switch and manually activate the oscillate limit switches until the machine is completely level.

- 6 Loosely install the limit switches. Using a feeler gauge, establish a gap of 0.015 - 0.030 inches / 0.381 - 0.762 mm between the limit switch plunger and the top of the axle.
- 7 Carefully hold the position of each limit switch and tighten the limit switch mounting fasteners.
- 8 Verify the gap is 0.015 0.030 inches / 0.381 0.762 mm between the limit switch plunger and the top of the axle.
- 9 Measure the distance between the drive chassis and the axle on both sides (from the inside of the drive chassis).
- Result: The measurements should be equal.

Note: If the distance is not equal and the adjustment to the limit switches was completed with the ground and drive chassis level, consult Genie Industries Service Department.

10-2 Oscillating Axle Cylinders

The oscillating axle cylinders extend and retract between the drive chassis and the oscillating axle. The cylinders are equipped with counterbalance valves to prevent movement in the event of a hydraulic line failure. The valves are not adjustable.

How to Remove an Oscillating **Axle Cylinder**

Note: Perform this procedure on a firm, level surface with the boom in the stowed position.

Note: When removing a hose assembly or fitting, the O-ring on the fitting and/or hose end must be replaced and then torqued to specification during installation. Refer to Section 2, Hydraulic Hose and Fitting Torque Specifications.

1 Rotate the boom until the turntable counterweight is between the circle-end and square-end tires.

2 Tag, disconnect and plug the oscillating axle cylinder hydraulic hoses. Cap the fittings on the oscillate cylinder.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

- 3 Remove the pin retaining fasteners from the oscillate cylinder rod-end pivot pin. Use a soft metal drift to remove the pin.
- 4 Attach a lifting strap from an overhead crane to the barrel end of the oscillating cylinder.
- 5 Remove the pin retaining fasteners from the oscillate cylinder barrel-end pivot pin. Use a soft metal drift to remove the pin.

ACAUTION Crushing hazard. The oscillate cylinder may become unbalanced and fall if not properly supported when removed from the machine.

6 Remove the oscillate cylinder from the machine.

This page intentionally left blank.

Fault Codes

Observe and Obey:

- Troubleshooting and repair procedures shall be completed by a person trained and qualified on the repair of this machine.
- ☑ Immediately tag and remove from service a damaged or malfunctioning machine.
- ☑ Repair any machine damage or malfunction before operating the machine.
- ☑ Unless otherwise specified, perform each repair procedure with the machine in the following configuration:
 - · Machine parked on a firm, level surface
 - · Boom in stowed position
 - Turntable rotated with the boom between the circle-end (yellow arrow) wheels.
 - Turntable secured with the turntable rotation lock pin
 - Key switch in the off position with the key removed
 - Welder disconnected from the machine (if equipped with the weld cable to platform option)
 - · Wheels chocked
 - All external AC power supply disconnected from the machine

Before Troubleshooting:

- Read, understand and obey the safety rules and operating instructions printed in the Operator's Manual on your machine.
- ☑ Be sure that all necessary tools and test equipment are available and ready for use.
- Read each appropriate fault code thoroughly. Attempting shortcuts may produce hazardous conditions.
- ☑ Be aware of the following hazards and follow generally accepted safe workshop practices.

ADANGER

Crushing hazard. When testing or replacing any hydraulic component, always support the structure and secure it from movement.

AWARNING

Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

Note: Two persons will be required to safely perform some troubleshooting procedures.

CONTROL SYSTEM FAULT CODES

REV C

Fault Diagnostics - Control System

How to Read Control System Fault Codes

Note: Initial fault testing occurs at power-up.

Faults are abnormal conditions that exist due to component failure or System misuse. CPU, memory, LCD, LED, limited joystick and limited operator switch testing is done on power-up. If an operator switch is depressed on power-up, the display should show and error and not allow any machine functions.

Releasing the switch will clear the error and allow all machine functions. The joystick operates similarly.

All other fault testing is done continuously.

- 1 When a fualt is diagnosed, the PCON fault indicator will flash and a fault message will be displayed on the TCON LCD. The message will contain the fault source and type.
- 2 Additional information, including the occurrence counter and a time-stamp is available with a PC, connected to one of the RS232 ports. Up to 30 unique fault messages can be saved. Each fault is saved with the device identity, fault type, engine hour time-stamp and an 8-bit occurrence counter.
- 3 The fault code table on the following pages lists the functions or components monitored by the system and recovery actions.

REV C

Error Source	Error Type	Effects	Recovery Actions
	Not calibrated	Normal function except threshold for one or the other direction is zero. Display message on LCD.	Calibrate thresholds.
PRIMARY BOOM EXT/RET	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)
FLOW VALVE	Value at 5.0 V		
	Value Too High	Limited speed and direction frozen at zero and neutral, alarm sounds	Power up controller with the problem corrected.
	Value Too Low	at zero and neutral, alarm sounds	problem corrected.
	Value at 0 V		
PRI BOOM EXT VALVE			
PRI BOOM RET VALVE	Fault check	Limited speed and direction frozen	Power up controller with the
PRI BOOM UP VALVE	1 duit check	at zero and neutral, alarm sounds	problem corrected.
PRI BOOM DOWN VALVE			
SEC BOOM LENGTH	Fault check (unknown length)	Stop all secondary boom functions, allow only secondary boom retract. Display message on LCD.	Power up controller with the problem corrected.
SEC BOOM ANGLE	Fault check (unknown angle)	Stop all secondary boom functions, allow only secondary boom retract. Once the boom is retracted allow secondary boom down. Display message on LCD.	Power up controller with the problem corrected.
SEC BOOM UP/DOWN SPEED	Not calibrated	Display message on LCD and allow operation at default speed.	Perform auto calibrate procedure.
	Not calibrated	Normal function except threshold for one or the other direction is zero. Display message on LCD.	Calibrate thresholds.
SEC BOOM UP/DOWN/EXT/RET	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)
FLOW VALVE	Value at 5.0 V		
	Value Too High	Limited speed and direction frozen	Power up controller with the
	Value Too Low	at zero and neutral, alarm sounds	problem corrected.
	Value at 0 V		
SEC BOOM EXT VALVE			
SEC BOOM RET VALVE			
SEC BOOM UP VALVE		Limited speed and direction frozen	Power up controller with the
SEC BOOM DOWN VALVE	Fault check	at zero and neutral, alarm sounds	problem corrected.
SEC EXT SEQ VALVE			
SEC DWN SEQ VALVE			

Error Source	Error Type	Effects	Recovery Actions	
ENGINE SPEED	Range check (underspeed)			
OIL PRESSURE	Range check (low oil pressure)	Display message on LCD.	Power up controller with the problem corrected.	
WATER/OIL TEMP	Range check (high temperature)			
OIL PRESSURE SENSOR			Power up controller with the problem	
WATER/OIL TEMP SENSOR	Fault check	Display message on LCD.	corrected.	
AXLE EXT/RET BUTTONS		Axle extend/retract disabled, display message on LCD.	Power up controller with the problem corrected.	
CAN BUS	Fault check	Display message on LCD.	Power up controller with the problem corrected.	
	Value at 5.0 V			
	Value too high	Limited speed and direction frozen at	Power up controller with problem	
	Value too low	zero and neutral, alarm sounds.	corrected.	
PRIMARY BOOM UP/DOWN	Value at 0 V			
JOYSTICK	Not calibrated	Joystick Speed and Direction frozen at zero and neutral	Calibrate joystick.	
	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
	Value at 5.0 V			
	Value too high	Limited speed and direction frozen at	Power up controller with problem	
	Value too low	zero and neutral, alarm sounds.	corrected.	
SECONDARY BOOM JOYSTICK	Value at 0 V			
JOISTICK	Not calibrated	Joystick speed and direction frozen at zero and neutral.	Calibrate joystick.	
	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
	Value at 5.0 V			
	Value too high	Limited speed and direction frozen at	Power up controller with problem	
PRIMARY	Value too low	zero and neutral, alarm sounds.	corrected.	
EXTEND/RETRACT	Value at 0 V			
JOYSTICK	Not calibrated	Joystick speed and direction frozen at zero and neutral.	Calibrate joystick.	
	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	

Error Source	Error Type	Effects	Recovery Actions	
	Value at 5.0 V			
	Value too high	Limited speed and direction frozen at	Power up controller with problem	
	Value too low	zero and neutral, alarm sounds.	corrected.	
STEER JOYSTICK	Value at 0 V			
	Not calibrated	Joystick speed and direction frozen at zero and neutral.	Calibrate joystick.	
	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
PRIMARY BOOM UP/DOWN SWITCHES ON TCON	Fault Check, (both buttons pressed)	Primary boom up/down disabled, display message on LCD.	Power up controller with the problem corrected.	
SEC BOOM UP/EXT/DWN/RET SWITCHES ON TCON	Fault Check, (both buttons pressed)	Secondary boom up/extend and down/retract disabled, display message on LCD.	Power up controller with the problem corrected	
PRIMARY BOOM EXT/RET SWITCHES ON TCON	Fault Check, (both buttons pressed)	Primary boom extend/retract disabled, display message on LCD.	Power up controller with the problem corrected.	
PRIMARY BOOM LENGTH	Fault check (unknown length)	Display message on LCD.	Power up controller with the problem corrected.	
PRIMARY BOOM ANGLE	Fault check (unknown angle)	Allow only primary boom retract and down. Display message on LCD.	Power up controller with the problem corrected.	
PRIMARY UP/DOWN SPEED	Not calibrated	Display message on LCD and allow operation at default speed.	Perform auto calibrate procedure.	
PRIMARY EXTEND/RETRACT SPEED	Not calibrated	Display message on LCD and allow operation at default speed.	Perform auto calibrate procedure.	
	Not calibrated	Normal function except threshold for one or the other direction is zero. Display message on LCD.	Calibrate thresholds.	
PRIMARY BOOM UP/DOWN	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
FLOW VALVE	Value at 5.0 V			
	Value Too High	Limited speed and direction frozen at	Power up controller with the problem	
	Value Too Low	zero and neutral, alarm sounds	corrected.	
	Value at 0 V			

Error Source	Error Type	Effects	Recovery Actions
SAFETY SWITCH P3		Display message on LCD.	
	1	P3 SAFETY SWITCH FAULT	-
SAFETY SWITCH P6R1		Display message on LCD. P6R1 SAFETY SWITCH FAULT	
	·	Display message on LCD.	1
SAFETY SWITCH P6R2		P6R2 SAFETY SWITCH FAULT	
CAFETY CMITCH DZ	•	Display message on LCD.	
SAFETY SWITCH P7		P7 SAFETY SWITCH FAULT	
SAFETY SWITCH P7R		Display message on LCD.	
0/11 ETT 0//// 0/// ///	ı	P7R SAFETY SWITCH FAULT	
SAFETY SWITCH P9A		Display message on LCD.	
	·	P9A SAFETY SWITCH FAULT	
SAFETY SWITCH P9B		Display message on LCD. P9B SAFETY SWITCH FAULT	
	ı	Display message on LCD.	Power up controller with the problem
SAFETY SWITCH P10	Fault check	P10 SAFETY SWITCH FAULT	corrected.
0.1.55577 0.1415011.577	ı	Display message on LCD.	
SAFETY SWITCH P11		P11 SAFETY SWITCH FAULT	
SAFETY SWITCH P12	,	Display message on LCD.	
SALLIT SWITCHF12		P12 SAFETY SWITCH FAULT	
SAFETY SWITCH P14		Display message on LCD.	
6,41211 64411611111	ı.	P14 SAFETY SWITCH FAULT	
SAFETY SWITCH P18		Display message on LCD.	
	·	P18 SAFETY SWITCH FAULT	-
SAFETY SWITCH P22		Display message on LCD. P22 SAFETY SWITCH FAULT	
	ı	Display message on LCD.	
SAFETY SWITCH P22R		P22R SAFETY SWITCH FAULT	
0.1557./.0147.014.500		Display message on LCD.	
SAFETY SWITCH P30		P30 SAFETY SWITCH FAULT	
PLATFORM OVERLOAD			
SENSOR			
BOOM UP OVERLOAD	Fault check (if active)	Display message on LCD.	Power up controller with the problem
BOOM DOWN OVERLOAD	i adii dilook (ii adiive)	Biopiay message on LOD.	corrected.
SHUT DOWN MODE			

Error Source	rror Source Error Type Effects		Recovery Actions	
	Value at 5.0 V			
	Value too high	Limited speed and direction frozen at	Power up controller with problem	
TURNTABLE ROTATE	Value too low	zero and neutral, alarm sounds.	corrected.	
JOYSTICK	Value at 0 V			
	Not calibrated	Joystick speed and direction frozen at zero and neutral.	Calibrate joystick.	
	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
TURNTABLE ROTATE BUTTONS	Fault Check, (both buttons pressed)	Turntable rotate disabled, display message on LCD.	Power up controller with the problem corrected.	
TURNTABLE ROTATE SPEED	Not calibrated	Display message on LCD and allow operation at default speed.	Perform auto calibrate procedure.	
	Not calibrated	Normal function except threshold for one or the other direction is zero. Display message on LCD.	Calibrate thresholds.	
TURNTABLE ROTATE FLOW	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
VALVE	Value at 5.0 V]	
	Value Too High	Limited speed and direction frozen at	Power up controller with the problem	
	Value Too Low	zero and neutral, alarm sounds.	corrected.	
	Value at 0 V			
TURNTABLE ROTATE CW VALVE TURNTABLE ROTATE CCW VALVE	Fault check	Limited speed and direction frozen at zero and neutral, alarm sounds.	Power up controller with the problem corrected.	
TURNTABLE LEVEL SENSOR X-DIRECTION TURNTABLE LEVEL SENSOR Y-DIRECTION PLATFORM LEVEL SENSOR Y-DIRECTION		Display message on LCD and sound audible alarm.	Correct problem.	

Error Source	Error Type	Effects	Recovery Actions	
	Value at 5.0 V	Sound audible warning and flash primary boom down LED at the medium rate and display message on LCD screen PRI BOOM ANG SENSOR SHORTED HIGH. Primary boom up inhibited. Primary boom velocity limited to 50% of default value.	·	
PRIMARY BOOM ANGLE SENSOR	Value at 0 V	Sound audible warning and flash primary boom down LED at the medium rate and display message on LCD screen PRI BOOM ANG SENSOR SHORTED LOW. Primary boom up inhibited. Primary boom velocity limited to 50% of default value.	·	
	Not calibrated	Sound audible warning at the medium rate and display message on LCD screen PRI BOOM ANG SENSOR NOT CALIBRATED, inhibit primary boom up from platform control.	Calibrate primary boom angle sensor.	
	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
	Value at 5.0 V			
	Value too high	Limited speed and direction frozen at	Power up controller with problem	
	Value too low	zero and neutral, alarm sounds.	corrected.	
PROPEL JOYSTICK	Value at 0 V			
	Not calibrated	Joystick speed and direction frozen at zero and neutral.	Calibrate joystick.	
	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
	Not calibrated	Normal function except threshold for one or the other direction is zero. Display message on LCD.	Calibrate thresholds.	
PROPEL VALVES FWD PROPEL VALVES REV	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing, (transient)	
PROPEL EDC FWD	Value at 5.0 V			
PROPEL EDC REV	Value Too High	Limited speed and direction frozen at	Power up controller with the problem	
	Value Too Low	zero and neutral, alarm sounds.	corrected.	
	Value at 0 V			

CONTROL SYSTEM FAULT CODES

Error Source	Error Type	Effects	Recovery Actions	
MOTOR SPEED VALVE				
BRAKE VALVE				
AUX PROPEL VALVE				
PLAT LEV UP VALVE		Limited and and direction frages at	Dawar up cantrallar with the problem	
PLAT LEV DN VALVE	Fault check	Limited speed and direction frozen at zero and neutral, alarm sounds.	Power up controller with the problem corrected.	
PLAT ROT CW VALVE		zoro ana noatrar, alarm sourido.	conceted.	
PLAT ROT CCW VALVE				
JIB UP VALVE				
JIB DN VALVE				
JIB SWITCHES	Fault Check, (both	Affected functions disabled, display	Power up controller with the problem	
PLAT ROT SWITCHES	contacts closed)	message on LCD.	corrected.	
	Value at 5.0 V			
	Value too high	Limited speed and direction frozen at	Power up controller with problem	
	Value too low	zero and neutral, alarm sounds.	corrected.	
STEERING JOYSTICK	Value at 0 V			
	Not calibrated	Joystick speed and direction frozen at zero and neutral.	Calibrate joystick.	
	Just calibrated	Initiate one second beep of audible warning device.	Self-clearing (transient)	
	Value at 5.0 V			
LE CED AND CNOD	Value too high	Limited speed and direction frozen at	Power up controller with problem	
LF STR ANG SNSR	Value too low	zero and neutral, alarm sounds.	corrected.	
	Value at 0 V			
	Value at 5.0 V			
DE CED ANO CNOD	Value too high	Limited speed and direction frozen at	Power up controller with problem corrected.	
RF STR ANG SNSR	Value too low	zero and neutral, alarm sounds.		
	Value at 0 V			
	Value at 5.0 V			
LD OTD AND ONOD	Value too high	Limited speed and direction frozen at	Power up controller with problem	
LR STR ANG SNSR	Value too low	zero and neutral, alarm sounds.	corrected.	
	Value at 0 V			
	Value at 5.0 V			
RR STR ANG SNSR	Value too high	Limited speed and direction frozen at	Power up controller with problem	
	Value too low	zero and neutral, alarm sounds.	corrected.	
	Value at 0 V			
LF STEER VALVE				
RF STEER VALVE		Limited speed and direction frozen at	Power up controller with the problem	
LR STEER VALVE	Fault check	zero and neutral, alarm sounds.	corrected.	
RR STEER VALVE				
FOOTSWITCH TIMEOUT		Display message on LCD display.	Recycle power.	

Continued on next page

CONTROL SYSTEM FAULT CODES

Control System Fault Codes

How to Clear Secondary Boom Safety Switch Faults

Note: Beginning with software release 2.0, the secondary boom envelope switches will latch and faults must be reset in software or through the use of the TCON LCD. They will not clear by repowering the machine.

Note: There are two methods to reset the faults, by using Web GPI or through the menu available on the TCON LCD.

Using Web GPI

- 1 Connect the device containing the WEB GPI software to the TCON with an RS-232 cable.
- 2 Select the Secondary Boom, then the Safety Switch Status Flags screen.
- 3 Change any safety switch drop down menus displaying FAULT to OK. Press SEND.
- 4 Exit Web GPI.

Using the TCON LCD

Note: Take care when using this method to avoid resetting threshold defaults.

- 1 With the key switch off, press and hold the button and turn the key switch to the on position. Release the button after five seconds and press the --++ buttons.
- 2 Press the button until clear all safety switch faults appears.
- 3 Select YES, then press the button.
- 4 Press the

 ◆ button until EXIT appears.
- 5 Select YES, then press the button.

Note: This clears all latching faults, not standard faults.

Fault Code Display - Deutz TD 2.9 L4 and Perkins 404F-22T Models

How to Retrieve Active Engine Fault Codes

The ECM constantly monitors the engine by the use of sensors on the engine. The ECM also uses signals from the sensors to initiate sequential fuel injection and make constant and instantaneous changes to ignition timing, fuel delivery and throttle position to maintain the engine's running condition at its highest efficiency while at the same time keeping exhaust emissions to a minimum. When a sensor fails or returns signals that are outside of set parameters, the ECM will store a fault code in memory that relates to the appropriate sensor. The active fault code will also be displayed on the LCD screen.

Note: The Perkins 404F-22T is equipped with an engine fault LED located at the platform control box.

If an engine fault occurs that does not result in an engine shutdown, the engine rpm will go into limp home mode resulting in the loss of high rpm..

Start the engine from the ground control box and operate various boom functions to verify that an active engine fault occurs and is shown on the display.

Note: All faults are stored in the Previous Fault history menu. These faults will not be erased when corrective action has been completed.

Note: Software is available from the engine manufacturer to perform diagnosis through the engine diagnostic port. Contact the specific engine manufacturer.

Deutz TD 2.9 L4 Engine Fault Codes

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWF	Description	SPN	FMI	KWF	Description
51	3	1019	EGR-Valve, short circuit to battery	51	6	1022	Actuator error EGR-Valve; signal range check high
51	3	1024	Position sensor error of actuator EGR-Valve; signal range check high	51	6	1224	Actuator EGR-Valve; over current
51	3	1226	EGR-Valve; short circuit to battery (A02)	51	6	1230	Actuator error EGR-Valve; Overload by short-circuit
51	3	1227	EGR-Valve; short circuit to	51	7	1016	Actuator position for EGR- Valve not plausible
51	4	1020	EGR-Valve; short circuit to ground	51	11	1231	Actuator error EGR-Valve; Power stage over temp due to high current
51	4	1025	Position sensor error actuator EGR-Valve; signal range check low	51	12	1018	Actuator EGR-Valve; powerstage over temperature
51	4	1228	EGR-Valve; short circuit to ground (A02)	51	12	1021	Mechanical actuator defect EGR-Valve
51	4	1229	EGR-Valve; short circuit to	51	12	1225	Actuator EGR-Valve; over temperature
51	4	1232	ground (A67) Actuator error EGR-Valve;	94	1	474	Low fuel pressure; warning threshold exceeded
51	5	1015	Voltage below threshold Actuator error EGR-Valve;	94	1	475	Low fuel pressure; shut off threshold exceeded
 51	5	1017	signal range check low Actuator EGR-Valve; open load	94	3	472	Sensor error low fuel pressure; signal range check high
51	5	1023	Actuator error EGR-Valve; signal range check low	94	4	473	Sensor error low fuel pressure; signal range check low
51	5	1223	Actuator EGR-Valve; open load	97	3	464	Sensor error water in fuel; signal range check high
51 	6	1014	Actuator error EGR-Valve; signal range check high	97	4	465	Sensor error water in fuel; signal range check low
				97	12	1157	Water in fuel level prefilter; maximum value exceeded

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWI	P Description	SPN	FMI	KWF	Description
100	0	734	High oil pressure; warning threshold exceeded	108	3	412	Sensor error ambient air press.; signal range check high
100	0	735	High oil pressure; shut off threshold exceeded	108	4	413	Sensor error ambient air press.; signal range check low
100	1	736	Low oil pressure; warning threshold exceeded	110	0	98	High coolant temperature; warning threshold exceeded
100	1	737	Low oil pressure; shut off threshold exceeded	110	0	99	High coolant temperature; shut off threshold exceeded
100	3	732	Sensor error oil pressure; signal range check high	110	3	96	Sensor error coolant temp.; signal range check high
100	4	733	Sensor error oil pressure sensor; signal range check low	110	4	97	Sensor error coolant temp.; signal range check low
102	2	88	Charged air pressure above warning threshold	111	1	101	Coolant level too low
102	2	89	Charged air pressure above shut off threshold	132	11	1	Air flow sensor load correction factor exceeding the maximum drift limit; plausibility error
102	4	777	Sensor error charged air press.; signal range check low	132	11	2	Air flow sensor load correction factor exceeding drift limit; plausibility error
105	0	996	High charged air cooler temperature; warning threshold exceeded	132	11	3	Air flow sensor low idle correction factor exceeding the maximum drift limit
105	0	997	High charged air cooler temperature; shut off threshold exceeded	132	11	4	Air flow sensor load correction factor exceeding the maximum drift limit
105	3	994	Sensor error charged air temperature; signal range check high	157	3	877	Sesnor error rail pressure; signal range check high
105	4	995	Sensor error charged air temperature; signal range check low	157	4	878	Sensor error rail pressure; signal range check low

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWI	P Description	SPN	FMI	KWF	Description
168	0	1180	Physical range check high for battery voltage	174	0	481	High low fuel temperature; warning threshold exceeded
168	1	1181	Physical range check low for battery voltage	174	0	482	High Low fuel temperature; shut off threshold exceeded
168	2	47	High battery voltage; warning threshold exceeded	175	0	740	Physical range check high for oil temperature
168	2	48	Low battery voltage; warning threshold exceeded	175	0	745	High oil temperature; warning threshold exceeded
168	3	45	Sensor error battery voltage; signal range check high	175	0	746	High oil temperature; shut off threshold exceeded
168	4	46	Sensor error battery voltage; signal range check low	175	1	741	Physical range check low for oil temperature
171	3	417	Sensor error environment temperature; signal range check high	175	2	738	Sensor oil temperature; plausibility error
171	4	418	Sensor error environment temperature; signal range check low	175	2	739	Sensor oil temperature; plausibility error oil temperature too high
172	0	1182	Physical range check high for	175	3	743	Sensor error oil temperature; signal range check high
172	1	1183	Physical range check low for	175	4	744	Sensor error oil temperature; signal range check low
172	2	9	intake air temperature Sensor ambient air	190	0	389	Engine speed above warning threshold (FOC-Level 1)
172	2	983	Intake air sensor; plausibility error error	190	2	421	Offset angle between crank- and camshaft sensor is too large
172	3	981	Sensor error intake air; signal range check high	190	8	419	Sensor camshaft speed; disturbed signal
172	4	982	Sensor error intake air sensor; signal range check low				

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWI	P Description	SPN	FMI	KWF	Description
190	8	422	Sensor crankshaft speed; disturbed signal	412	3	1007	Sensor error EGR cooler downstream temperature; signal range check high
190	11	390	Engine speed above warning threshold (FOC-Level 2)	412	412 4	1008	Sensor error EGR cooler downstream temperature; signal range check low
190	12	420	Sensor camshaft speed; no signal				
190	12	423	Sensor crankshaft speed; no signal	- 520 	9	306	Timeout Error of CAN-Receive- Frame TSC1TR; Setpoint
190	14	391	Engine speed above warning threshold (Overrun Mode)	- 597	2	49	Break lever mainswitch and break lever redundancyswitch status not plausible
190	14	1222	Camshaft- and Crankshaft speed sensor signal not	624	3	971	SVS lamp; short circuit to batt.
			available on CAN	624	4	972	SVS lamp; short circuit to grd.
411	0	791	791 Physical range check high for differential pressure Venturiunit (EGR)	624	5	969	SVS lamp; open load
				624	12	970	SVS lamp; powerstage over temperature
411	1	792	Physical range check low for differential pressure Venturiunit (EGR)	630	12	376	Access error EEPROM memory (delete)
411	3	795	Sensor error differential pressure Venturiunit (EGR);	630	12	377	Access error EEPROM memory (read)
411	4	381	signal range check high Physical range check low for	630	12	378	Access error EEPROM memory (write)
			EGR differential pressure	639	14	84	CAN-Bus 0 "BusOff-Status"
411	4	796	Sensor error differential pressure Venturiunit (EGR); signal range check low	651	3	580	Injector 1 (in firing order); short circuit
			<u>-</u>	651	4	586	High side to low side short circuit in the injector 1 (in firing order)

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KW	P Description	SPN	FMI	KWF	Description
651	5	568	Injector 1 (in firing order); interruption of electric connection	677	3	956	Starter relay high side; short circuit to battery
652	3	581	Injector 2 (in firing order);	_ 677	3	960	Starter relay low side; short circuit to battery
652	4	587	short circuit 587 High side to low side short	677	4	957	Starter relay high side; short circuit to ground
			circuit in the injector 2 (in firing order)	677	4	961	Starter relay low side; short circuit to ground
652	5	569	interruption of	677	5	958	Starter relay; no load error
653	3	582	electric connection Injector 3 (in firing order);	677	12	959	Starter relay; powerstage over temperature
			short circuit	703	3	426	Engine running lamp; short circuit to battery
653	4	588	High side to low side short circuit in the injector 3 (in firing order)	703	4	427	Engine running lamp; short circuit to ground
653	5	570	Injector 3 (in firing order); interruption of	703	5	424	Engine running lamp; open load
05.4		500	electric connection	703	12	425	Engine running lamp; powerstage over temperature
654	3	583	Injector 4 (in firing order); short circuit	729	5	545	Cold start aid relay open load
654	4	589	High side to low side short circuit in the injector 4 (in firing order)	729	12	547	Cold start aid relay; over temperature error
654	5	571	Injector 4 (in firing order);	- 898	9	305	Timeout Error of CAN-Receive- Frame TSC1TE; Setpoint
			interruption of electric connection	1079	13	946	Sensor supply voltage monitor 1 error (ECU)
676	11	543	Cold start aid relay error.	1000	40	0.47	
676	11	544	Cold start aid relay open load	- 1080 	13	947	Sensor supply voltage monitor 2 error (ECU)

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWF	Description	SPN	FMI	KWF	Description
1109	2	121	Engine shut off demand ignored	I 1180 1	1463	Exhaust gas temperature upstream turbine; shut off	
1136	0	1398	Physikal range check high for ECU temperature				threshold exceeded
1136	1	1399	Physikal range check low for ECU temperature	1180	3	1067	Sensor error exhaust gas temperature upstream turbine; signal range check high
1136	3	1400	Sensor error ECU temperature; signal range check high	1180	11	1066	Sensor exhaust gas temperature upstream turbine; plausibility error
1136	4	1401	Of Sensor error ECU temperature; signal range check low	4400		4 4 4 4	· · · · · · · · · · · · · · · · · · ·
1176	3	849	Sensor error pressure sensor	1188	2	1414	Wastegate; status message from ECU missing
			upstream turbine; signal range check high	1188	7	1415	Wastegate actuator; blocked
1176	4	850 Sensor error pressure sensor downstream turbine; signal range check high	1188	11	1411	Wastegate actuator; internal error	
-				1188	11	1412	Wastegate actuator; EOL calibration not
1180 (0	1193	93 Physical range check high for exhaust gas temperature				performed correctly
1180	0	1460	upstream turbine	1188	11	1416	Wastegate actuator; over temperature (> 145°C)
1100	U	1400	Turbocharger Wastegate CAN feedback; warning threshold exceeded	1188	11	1417	Wastegate actuator; over temperature (> 135°C)
1180	0	1462	Exhaust gas temperature upstream turbine; warning threshold exceeded	1188	11	1418	Wastegate actuator; operating voltage error
1180	1	1194	Physical range check low for exhaust gas temperature	1188	13	1413	Wastegate actuator calibration deviation too large, recalibration required
			upstream turbine	1231	14	85	CAN-Bus 1 "BusOff-Status"
1180	1	1461	Turbocharger Wastegate CAN feedback; shut off threshold exceeded	1235	14	86	CAN-Bus 2 "BusOff-Status"

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWI	P Description	SPN	FMI	KWF	Description
1237	2	747	Override switch; plausibility error	2798	4	1338	Injector diagnostics; timeout error of short circuit to ground measurement cyl. Bank 1
1322	12	610	Too many recognized misfires in more than one cylinder	2798	4	1339	Injector diagnostics; short
1323	12	604	Too many recognized misfires in cylinder 1 (in firing order)				circuit to ground monitoring Test in Cyl. Bank 0
1324	12	605	Too many recognized misfires in cylinder 2 (in firing order)	2798	4	1340	Injector diagnostics; short circuit to ground monitoring Test in Cyl. Bank 1
1325	12	606	Too many recognized misfires in cylinder 3 (in firing order)	3224	2	127	DLC Error of CAN-Receive- Frame AT1IG1 NOX Sensor
1326	12	607	Too many recognized misfires in cylinder 4 (in firing order)				(SCR-system upstream cat; DPF-system downstream cat); length of frame incorrect
2659	0	1524	Physical range check high for EGR exhaust gas mass flow	3224	9	128	Timeout Error of CAN-Receive- Frame AT1IG1; NOX sensor upstream
2659	1	1525	Physical range check low for EGR exhaust gas mass flow				
2659	2	1523	Exhaust gas recirculation AGS sensor; plausibility error	3248	4	1047	Sensor error particle filter downstream temperature; signal range check low
2659	2	1527	AGS sensor temperature exhaust gas mass flow; plausibility error	3699	2	1616	DPF differential pressure sensor and a further sensor or actuator CRT system defective
2659	12	1526	Exhaust gas recirculation; AGS sensor has "burn off"	3699	2	1617	Temperature sensor us. and ds. DOC simultaneously defect
2797	4	1337	not performed Injector diagnostics; timeout	3699	14	1615	Maximum stand-still-duration reached; oil exchange required
			error of short circuit to ground measurement cyl. Bank 0	4765	0	1039	Physical range check high for exhaust gas temperature upstream (DOC)
				4765	1	1042	Physical range check low for exhaust gas temperature upstream (DOC)

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWF	Description	SPN	FMI	KWF	P Description
4766	0	1029	Physical range check high for exhaust gas temperature downstream (DOC)	523008	2	649	Timeout error in Manipulation control
4766	1	1032	Physical range check low for exhaust gas temperature downstream (DOC)	523009	9	825	Pressure Relief Valve (PRV) reached maximun allowed opening count
4768	2	1036	Sensor exhaust gas temperature upstream (DOC);	523009	10	833	Pressure relief valve (PRV) reached maximun allowed open time
4768	3	1044	Sensor error exhaust gas temperature upstream (DOC);	523212	9	171	Timeout Error of CAN-Receive- Frame ComEngPrt; Engine Protection
4768	4	1045	signal range check high Sensor error exhaust gas temperature upstream (DOC); signal range check low	523216	9	198	Timeout Error of CAN-Receive- Frame PrHtEnCmd; pre-heat command, engine command
4769	2	1026	Sensor exhaust gas temperature downstream	523240	9	179	Timeout CAN-message FunModCtl; Function Mode Control
4769	3	1034	(DOC); plausibility error Sensor error exhaust gas	523350	4	565	Injector cylinder-bank 1; short circuit
			temperature downstream (DOC); signal range check high	523352	4	566	Injector cylinder-bank 2; short circuit
4769	4	1035	Sensor error exhaust gas temperature downstream (DOC); signal range check low	523354	12	567	Injector powerstage output defect
523006	3	34	Controller mode switch; short circuit to battery	523470	2	826	Pressure Relief Valve (PRV) forced to open; performed by pressure increase
523006	4	35	Controller mode switch; short circuit to ground	523470	2	827	Pressure Relief Valve (PRV) forced to open; performed by
523008	1	648	Manipulation control was triggered				pressure shock

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWF	Description	SPN	FMI	KWF	Description
523470	7	876	Maximum rail pressure in limp home mode exceeded (PRV)	523612	12	613	Internal ECU monitoring detection reported error
523470	11	831	The PRV can not be opened at this operating point with a pressure shock	523612	12	614	Internal ECU monitoring detection reported error
523470	11	832	Rail pressure out of tolerance range	523612	12	615	Internal ECU monitoring detection reported error
523470	12	828	Open Pressure Relief Valve (PRV); shut off condition	523612	12	616	Internal ECU monitoring detection reported error
523470	12	829	Open Pressure Relief Valve	523612	12	617	Internal ECU monitoring detection reported error
523470	14	830	(PRV); warning condition Pressure Relief Valve (PRV) is	523612	12	618	Internal ECU monitoring detection reported error
523550	12	980	T50 start switch active for	523612	12	619	Internal ECU monitoring detection reported error
523601	13	948	Sensor supply voltage monitor	523612	12	620	Internal ECU monitoring detection reported error
523603	9	126	3 error (ECU) Timeout Error of CAN-Receive-	523612	12	621	Internal ECU monitoring detection reported error
			Frame AMB; Ambient Temperature Sensor	523612	12	623	Internal ECU monitoring detection reported error
523605	9	300	Timeout Error of CAN-Receive- Frame TSC1AE; Traction Control	523612	12	624	Internal ECU monitoring detection reported error
523606	9	301	Timeout Error of CAN-Receive- Frame TSC1AR; Retarder	523612	12	625	Internal ECU monitoring detection reported error
523612	12	387	Internal software error ECU; injection cut off	523612	12	627	Internal ECU monitoring detection reported error
523612	12	612	Internal ECU monitoring detection reported error	523612	12	628	Internal ECU monitoring detection reported error

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWI	Description	SPN	FMI	KWI	Description
523612	12	637	Internal ECU monitoring detection reported error	523615	3	596	Metering unit (Fuel-System); short circuit to battery low side
523612	12	1170	Internal software error ECU	523615	4	595	Metering unit (Fuel-System); short circuit to ground high side
523612	14	973	Softwarereset CPU SWReset_0	523615	4	597	Metering Unit (Fuel-System);
523612	14	974	Softwarereset CPU SWReset_1	323013	4	597	short circuit to ground low side
523612	14	975	Softwarereset CPU SWReset_2	523615	5	592	Metering unit (Fuel-System); open load
523613	0	856	Maximum positive deviation of rail pressure exceeded (RailMeUn0)	523615	12	593	Metering unit (Fuel-System);
							powerstage over temperature
523613	0	857	Maximum positive deviation of rail pressure in metering unit exceeded (RailMeUn1)	523619	2	488	Physical range check high for exhaust gas temperature upstrem (SCR-CAT)
523613	0	858	Railsystem leakage detected (RailMeUn10)	523698	11	122	Shut off request from supervisory monitoring function
523613	0	859	Maximum negative deviation of rail pressure in metering unit exceeded (RailMeUn2)	523717	12	125	Timeout Error of CAN-Transmit- Frame AmbCon; Weather environments
523613	0	860	Negative deviation of rail pressure second stage (RailMeUn22)	523718	3	1488	SCR mainrelay; short circuit to battery (only CV56B)
523613	0	862	Maximum rail pressure exceeded (RailMeUn4)	523718	4	1489	SCR mainrelay; short circuit to ground (only CV56B)
523613	1	861	Minimum rail pressure exceeded (RailMeUn3)	523718	5	1486	SCR mainrelay; open load (only CV56B)
523613	2	864	Setpoint of metering unit in overrun mode not plausible	523718	12	1487	SCR mainrelay; powerstage over temperature (only CV56B)
523615	3	594	Metering unit (Fuel-System);	523766	9	281	Timeout Error of CAN-Receive- Frame Active TSC1AE
			short circuit to battery highside	523767	9	282	Timeout Error of CAN-Receive- Frame Passive TSC1AE
				-			

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWI	P Description	SPN	FMI	KWF	Description	
523768	9	283	Timeout Error of CAN-Receive- Frame Active TSC1AR	523897	13	561	check of missing injector adjustment value programming (IMA) injector 3 (in firing order)	
523769	9	284	Timeout Error of CAN-Receive- Frame Passive TSC1AR	523898	13	562	check of missing injector	
523770	9	285	Timeout Error of CAN-Receive- Frame Passive TSC1DE				adjustment value programming (IMA) injector 4 (in firing order)	
523776	9	291	Timeout Error of CAN-Receive-	523910	6	1261	Air Pump; over current	
0_0//0	Ū		Frame TSC1TE - active	523913	3	74	Sensor error glow plug control	
523777	9	292	Passive Timeout Error of CAN- Receive-Frame TSC1TE;				diagnostic line voltage; signal range check high	
			Setpoint	523913	4	75	Sensor error glow plug control	
523778	9	293	Active Timeout Errorof CAN- Receive-Frame TSC1TR				diagnostic line voltage; signal range check low	
523779	9	294	Passive Timeout Error of CAN- Receive-Frame TSC1TR	523914	3	78	Glow plug control; short circuit to battery	
523788	12	299	299 Timeout Error of CAN-Transmit-	523914	4	79	Glow plug control; short circuit to ground	
			Frame TrbCH; Status Wastegate	523914	5	76	Glow plug control; open load	
523793	9	202	Timeout Error of CAN-Receive- Frame UAA10; AGS sensor	523914	5	1216	Glow plug control release line; short circuit error	
		000	service message	523914	11	1217	Glow plug control; internal error	
523794	9	203	Timeout Error of CAN-Receive- Frame UAA11; AGS sensor data	523914	12	77	Glow plug control; powerstage over temperature	
523895	13	559	Check of missing injector adjustment value programming	523919	2	1378	Sensor air pump airpressure; plausibility error	
			(IMA) injector 1 (in firing order)	523920	2	1379	Sensor exhaust gas back	
523896	13	560	check of missing injector adjustment value programming (IMA) injector 2 (in firing order)				pressure burner; plausibility error	
		(IIVIA) INJECTOR 2 (III IIIIII GOIDEI)						

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWI	Description	SPN	FMI	KWF	Description
523922	7	1262	Burner Shut Off Valve; blocked closed	523936	12	169	Timeout Error of CAN-Transmit- Frame EEC3VOL2; Engine send messages
523922	7	1264	Burner Shut Off Valve; blocked open	523946	0	1158	Zerofuel calibration injector 1
523929	0	109	Fuel Balance Control integrator injector 1 (in firing order);				(in firing order); maximum value exceeded
			maximum value exceeded	523946	1	1164	Zerofuel calibration injector 1 (in firing order);
523929	1	115	Fuel Balance Control integrator injector 1 (in firing order);				minimum value exceeded
			minimum value exceeded	523947	0	1159	Zerofuel calibration injector 2 (in firing order);
523930	0	110	Fuel Balance Control integrator injector 2 (in firing order);				maximum value exceeded
			maximum value exceeded	523947	1	1165	Zerofuel calibration injector 2 (in firing order);
523930	1	116	Fuel Balance Control integrator injector 2 (in firing order);				minimum value exceeded
			minimum value exceeded	523948	0	1160	Zerofuel calibration injector 3 (in firing order);
523931	0	111	Fuel Balance Control integrator injector 3 (in firing order);				maximum value exceeded
			maximum value exceeded	523948	1	1166	Zerofuel calibration injector 3 (in firing order);
523931	1	117	Fuel Balance Control integrator injector 3 (in firing order);				minimum value exceeded
			minimum value exceeded	523949	0	1161	Zerofuel calibration injector 4
523932	0	112	Fuel Balance Control integrator injector 4 (in firing order);				(in firing order); maximum value exceeded
			maximum value exceeded	523949	1	1167	Zerofuel calibration injector 4
523932	1	118	Fuel Balance Control integrator injector 4 (in firing order);				(in firing order); minimum value exceeded
			minimum value exceeded	523960	0	1011	Physical range check high for EGR cooler downstream temp.
523935	12	168	Timeout Error of CAN-Transmit- Frame EEC3VOL1; Engine send messages				

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWF	Description	SPN	FMI	KWF	Description
523960	0	1458	High exhaust gas temperature EGR cooler downstream; warning threshold exceeded	524016	2	1259	Amount of air is not plausible to pump speed
523960	1	1012	Physical range check low for	524016	2	1260	Calculated amount of air is not plausible to HFM reading
			EGR cooler downstream temp.	524016	11	1258	HFM sensor; electrical fault
523960	1	1459	High exhaust gas temperature EGR cooler downstream; shut off threshold exceeded	524021	11	1263	Burner fuel line pipe leak behind Shut Off Valve
523980	14	1187	Bad quality of reduction agent detected	524024	11	1302	Deviation of the exhaust gas temp. setpoint to actual value downstream (DOC) too high
523981	11	918	Urea-tank without heating function (heating phase)	524028	2	1431	CAN message PROEGRActr; plausibility error
523982	0	360	Powerstage diagnosis disabled; high battery voltage	524029	2	1432	Timeout Error of CAN-Receive- Frame ComEGRActr - exhaust
523982	1	361	Powerstage diagnosis disabled; low battery voltage				gas recirculation positioner
		1045		524030	7	1440	EGR actuator; internal error
523988	3	1245	Charging lamp; short circuit to battery	524031	13	1441	EGR actuator; calibration error
523988	4	1246	Charging lamp; short circuit to ground	524032	2	1442	EGR actuator; status message "EGRCust" is missing
523988	5	1243	Charging lamp; open load	524033	7	1443	EGR actuator; due to overload in Save Mode
523988	12	1244	Charging lamp; over temp.	524034	3	1438	Disc separator;
523998	4	1327	Injector cylinder bank 2 slave; short circuit			1400	short circuit to battery
523999	12	1328		524034	4	1439	Disc separator; short circuit to ground
525999	12	1320	Injector powerstage output Slave defect			1.100	
524014	1	1254	Air pressure glow plug flush	524034	5	1436	Disc Separator; open load
			line; below limit	524034	12	1437	Disc Separator; powerstage over temperature

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWF	Description	SPN	FMI	KWP	Description
524035	12	1341	Injector diagnostics; time out error in the SPI communication	524108	9	1669	Timeout error of CAN- Transmit-Frame ComEGRTVActr
524057	2	1505	Electric fuel pump; fuel pressure build up error	524109	9	1679	Timeout error of CAN-
524097	9	1663	Timeout error of CAN-Transmit- Frame DPFBrnAirPmpCtl				Receive-Frame ComRxEGRTVActr
524098	9	1664	Timeout error of CAN-Transmit- Frame ComDPFBrnPT	524110	9	1670	Timeout error of CAN- Transmit-Frame ComETVActr
524099	9	1665	$\label{thm:continuous} TimeouterrorofCAN-Transmit-FrameComDPFC1$	524111	9	1680	Timeout error of CAN- Receive-Frame
524100	9	1666	Timeout error of CAN-Transmit- Frame ComDPFHisDat	524112	9	1671	ComRxETVActr Timeout ComITVActr
524101	9	1667	Timeout error of CAN-Transmit- Frame ComDPFTstMon	524113	9	1681	Timeout error of CAN- Receive-Frame
524102	9	1674	Timeout error of CAN-				ComRxITVActr
			Receive-Frame ComRxDPFBrnAirPmpCtl	524114	9	1659	Timeout error of CAN- Transmit-Frame A1DOC
524103	9	1675	Timeout error of CAN-Receive- Frame ComRxDPFBrnAirPmp	524115	9	1660	Timeout error of CAN- Transmit-Frame AT1S
524104	9	1676	Timeout error of CAN-Receive- Frame ComRxDPFCtl	524116	9	1661	Timeout error of CAN- Transmit-Frame SCR2
524105	9	1668	Timeout error of CAN-Transmit- Frame ComEGRMsFlw	524117	9	1662	Timeout error of CAN- Transmit-Frame SCR3
524106	9	1677	Timeout error of CAN- Receive-Frame ComRxEGRMsFlw1	524118	9	1672	Timeout error of CAN- Receive-Frame ComRxCM1
524107	9	1678	Timeout error of CAN- Receive-Frame ComRxEGRMsFlw2	524119	9	1673	Timeout error of CAN- Receive-Frame ComRxCustSCR3

DEUTZ TD 2.9 L4 ENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier / KWP = Keyword Protocol

SPN	FMI	KWF	Description
524120	9	1682	Timeout error of CAN- Receive-Frame ComRxSCRHtDiag
524121	9	1683	Timeout error of CAN- Receive-Frame ComRxTrbChActr
524122	9	1684	Timeout error of CAN- Receive-Frame ComRxUQSens
524123	9	1685	Timeout error of CAN- Receive-Frame ComSCRHtCtl
524124	9	1686	Timeout error of CAN- Receive-Frame ComTxAT1IMG
524125	9	1687	Timeout error of CAN- Receive-Frame ComTxTrbChActr

Perkins 404F-22T Engine Fault Codes

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier

FMI	Description	SPN	FMI	Description
3	Accelerator Pedal Position 2: Voltage Above Normal	172	3	Engine Air Inlet Temperature: Voltage Above Normal
4	Accelerator Pedal Position 2: Voltage Below Normal	172	4	Engine Air Inlet Temperature: Voltage Below Normal
3	Accelerator Pedal Position 1:	190	0	Engine Speed : High- most severe (3)
4	Accelerator Pedal Position 1:	190	8	Engine Speed : Abnormal Frequency, Pulse Width or Period
1	Engine Oil Pressure :Low- most	558	3	Accelerator Pedal1 Low Idle Switch: Voltage Above Normal
3	Barometric Pressure :	558	4	Accelerator Pedal1 Low Idle Switch: Voltage Below Normal
4	Barometric Pressure :	638	6	Engine Fuel Rack Actuator: Current Above Normal
	Voltage Below Normal	639	14	J1939 Network#1: Special Instruction
3	Engine Coolant Temperature : Voltage Above Normal	723	3	Engine Speed Sensor #2: Voltage Above Normal
4	Engine Coolant Temperature : Voltage Below Normal	723	4	Engine Speed Sensor #2: Voltage Below Normal
15	Engine Coolant Temperature : High -least severe (1)		8	"Engine Speed Sensor#2: Abnormal Frequency,
0	Battery Potential/ Power Input 1 : High- most severe (3)			Pulse Width or "Period"
3	Battery Potential/ Power Input 1:	723	10	Engine Speed Sensor #2: Abnormal Rate of Change
4	Battery Potential/ Power Input 1:	733	3	Engine Rack Position Sensor: Voltage Above Normal
	Voltage Below Normal	733	4	Engine Rack Position Sensor: Voltage Below Normal
	3 4 1 3 4 15 0	Accelerator Pedal Position 2: Voltage Above Normal Accelerator Pedal Position 2: Voltage Below Normal Accelerator Pedal Position 1: Voltage Above Normal Accelerator Pedal Position 1: Voltage Below Normal Engine Oil Pressure :Low-most severe (3) Barometric Pressure : Voltage Above Normal Barometric Pressure : Voltage Below Normal Engine Coolant Temperature : Voltage Above Normal Engine Coolant Temperature : Voltage Below Normal Engine Coolant Temperature : High -least severe (1) Battery Potential/ Power Input 1 : High-most severe (3) Battery Potential/ Power Input 1: Voltage Above Normal	Accelerator Pedal Position 2: Voltage Above Normal 4 Accelerator Pedal Position 2: Voltage Below Normal 3 Accelerator Pedal Position 1: Voltage Above Normal 4 Accelerator Pedal Position 1: Voltage Below Normal 558 1 Engine Oil Pressure :Low-most severe (3) 3 Barometric Pressure : Voltage Above Normal 4 Barometric Pressure : Voltage Below Normal 558 638 4 Barometric Pressure : Voltage Below Normal 639 723 4 Engine Coolant Temperature : Voltage Below Normal 723 15 Engine Coolant Temperature : High -least severe (1) 0 Battery Potential/ Power Input 1 : High-most severe (3) 723 8 Battery Potential/ Power Input 1 : Voltage Above Normal 4 Battery Potential/ Power Input 1 : Voltage Below Normal	3 Accelerator Pedal Position 2: Voltage Above Normal 4 Accelerator Pedal Position 2: 172 4 Voltage Below Normal 3 Accelerator Pedal Position 1: 190 0 Voltage Above Normal 4 Accelerator Pedal Position 1: 190 8 558 3 1 Engine Oil Pressure :Low-most 190 8 3 Barometric Pressure : 190 9 Voltage Above Normal 9 4 Barometric Pressure : 190 9 Voltage Below Normal 9 3 Engine Coolant Temperature : 190 9 Voltage Above Normal 9 4 Engine Coolant Temperature : 190 9 Voltage Below Normal 9 4 Engine Coolant Temperature : 190 9 Voltage Below Normal 9 558 4 638 6 639 14 723 3 4 Engine Coolant Temperature : 190 9 Voltage Below Normal 9 723 4 723 10 8 Battery Potential/ Power Input 1 : 190 9 Voltage Above Normal 9 4 Battery Potential/ Power Input 1: 190 9 Voltage Below Normal 9 4 Battery Potential/ Power Input 1: 190 9 Voltage Below Normal 9 4 Battery Potential/ Power Input 1: 190 9 Voltage Below Normal 9 4 Battery Potential/ Power Input 1: 190 9 Voltage Below Normal 9 4 Battery Potential/ Power Input 1: 190 9 Voltage Below Normal 9

PERKINS 404F-22TENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier

	-					
SPN	FMI	Description	SPN	FMI	Description	
1485	7	ECU Main Relay : Not Responding Property	3242	15	"Particulate Trap Intake Gas Temp: High - least severe"(1)"	
2840	11	ECU Instance: Other Failure Mode	3242	16	Particulate Trap Intake Gas Temp:	
2840	12	ECU Instance: Failure			High-moderate severity (2)	
2840	13	ECU Instance: Out of Calibration	3251	3	Particulate Trap Differential Pressure :Voltage Above Normal	
2970	3	Accelerator Pedal 2 Low Idle Switch: Voltage Above Normal	3251	4	Particulate Trap Differential Pressure :Voltage Below Normal	
2970	4	Accelerator Pedal 2 Low Idle Switch: Voltage Below Normal	3473	7	Aftertreatmert #1 Failed to Ignite: Not Responding Properly	
3241	1	Exhaust Gas Temperature 1: Low- most severe (3)	3473	11	Aftertreatmert #1 Failed to Ignite : Other Failure Mode	
3241	3	Exhaust Gas Temperature 1: Voltage Above Normal	3484	0	Aftertreatmert #1 Ignition : High-most severe (3)	
3241	4	Exhaust Gas Temperature 1: Voltage Below Normal	3484	3	Aftertreatmert #1 Ignition : Voltage Above Normal	
3241	15	Exhaust Gas Temperature 1: High-least severe (1)	3484	4	Aftertreatmert #1 Ignition : Voltage Below Normal	
3241	16	Exhaust Gas Temperature 1: High- moderate severity (2)	3556	6	Aftertreatmert 1 Hydrocarbon Doser 1: Current Above Normal	
3242	1	"Particulate Trap Intake Gas Temp: Low- most severe"(3)"	3610	3	"Diesel Particulate Filter Outlet Pressure Sensor 1:	
3242	3	"Particulate Trap Intake Gas Temp:	· 		Voltage "Above Normal"	
		Voltage Above "Normal"	3610	4	DieselParticulate Filter Outlet	
3242	4	"Particulate Trap Intake Gas Temp: Voltage Below "Normal"			Pressure Sensor 1: Voltage Below Normal	

PERKINS 404F-22TENGINE FAULT CODES

SPN = Suspect Parameter Number / FMI - Failure Mode Identifier

SPN	FMI	Description
3713	7	DPF Active Regeneration Inhibited Due to System Timeout: Not Responding Properly
3713	31	DPF Active Regeneration Inhibited Due to System Timeout
3719	0	Particulate Trap #1 Soot Load Percent: High- most severe (3)
3719	16	Particulate Trap #1 Soot Load Percent: High-moderate severity (2)
4016	6	High Current Auxiliary Power Relay 1: Current Above Normal
4201	3	Engine Speed Sensor #1: Voltage Above Normal
4201	4	Engine Speed Sensor #1: Voltage Below Normal
4201	8	"Engine Speed Sensor #1: Abnormal Frequency, Pulse \Nidth, or "Period"
4201	10	Engine Speed Sensor #1: Abnormal Rate of Change
4765	1	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Low-most severe (3)
4765	3	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Voltage Above Normal

SPN	FMI	Description
4765	4	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: Voltage Below Normal
4765	15	Aftertreatmert #1Diesel Oxidation Catalyst Intake Gas Temperature: High-least severe (1)
4765	16	Aftertreatmert #1 Diesel Oxidation Catalyst Intake Gas Temperature: High-moderate severity (2)
5487	3	Aftertreatmert 1 Burner Unit Combustion Chamber Temperature: Voltage Above Normal
5487	4	Aftertreatmert 1 Burner Unit Combustion Chamber Temperature: Voltage Below Normal
6581	6	Aftertreatmert 1 Hydrocarbon Doser 2 : Current Above Normal

Continental TME27 Engine Fault Codes

Engine Fault Codes - Continental Models

How to Retrieve Continental Engine Fault Codes

The ECM constantly monitors the engine by the use of sensors on the engine. The ECM also uses signals from the sensors to initiate sequential fuel injection and make constant and instantaneous changes to ignition timing, fuel delivery and throttle position to maintain the engine's running condition at its highest efficiency while at the same time keeping exhaust emissions to a minimum. When a sensor fails or returns signals that are outside of set parameters, the ECM will store a fault code in memory that relates to the appropriate sensor and will turn on the Check Engine Light.

Note: Perform this procedure with the key switch in the off position.

- 1 Open the ground controls side cover and locate the run/test toggle switch on the side of the ground control box.
- 2 Pull out the red Emergency Stop button to the on position at both the ground and platform controls.
- 3 Quickly activate and release the start toggle switch/button. Do not start the engine.
- 4 Move and hold the run/test toggle switch to the test position.
- Result: The check engine light should turn on. The check engine light should begin to blink.

5 Continue to hold the run/test toggle switch in the test position and count the blinks.

Note: Before the fault codes are displayed, the check engine light will blink a code 123 three times. After the fault codes, the check engine light will blink a code 123 three times again indicating the end of the stored codes.

Note: If any fault codes are present, the ECM will blink a three digit code three times for each code stored in memory. It will blink the first digit of a three digit code, pause, blink the second digit, pause, and then blink the third digit. For example: the check engine light blinks 5 consecutive times, blinks 3 times and then 1 time. That would indicate code 531.

Note: Once a fault code has been retrieved and the repair has been completed, the ECM memory must be reset to clear the fault code from the ECM. See *How to Clear Engine Fault Codes from the ECM*.

How to Clear Engine Fault Codes from the ECM

Note: Perform this procedure with the engine off and the key switch in the off position.

- 1 Open the engine side turntable cover and locate the battery.
- 2 Disconnect the negative battery cable from the battery for a minimum of 5 minutes.

Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

3 Connect the negative battery cable to the battery.

CONTINENTAL TME27 ENGINE FAULT CODES

System	Code	Fault Name	Shutdown	Adaptive Learn	Adaptive Learn KC*	Power Derate 1	Power Derate 2	Low Rev Limit	Fault Conditions
MAP	108	MAP Pressure High		Υ	Υ				MAP pressure > 16 psi and TPS < 10%
									and RPM > 1800
									To Unlatch, MAP pressure must be < 10
	107	MAP Voltage Low		Υ	Υ				psi MAP voltage < 0.05 vdc and TPS > 2%
	107	WAP Voltage Low		ī	ı				and RPM < 7000
									To Unlatch, MAP voltage must be > 0.5
									vdc
ECT/	118	ECT Voltage High		Υ					ECT voltage > 4.95 vdc
CHT	117	ECT Voltage Low		Υ					ECT voltage < 0.05 vdc
	116	ECT higher than expected 1		Υ	Υ	Υ			ECT > 210° F and RPM > 600
	217	ECT higher than expected 2	Y						ECT > 230° F and RPM > 600
						1			
IAT	113	IAT Voltage High		Υ					IAT voltage > 4.95 vdc
	112	IAT Voltage Low		Υ					IAT voltage < 0.05 vdc
	111	IAT higher than expected 1		Υ		Υ			IAT > 200° F and RPM > 1000
	127	IAT higher than expected 2	Υ						IAT > 210° F and RPM > 1000
									I 55
BP	2229	BP Pressure High		Y	Υ				BP pressure > 16 psi
	129	BP Pressure Low		Υ	Υ				BP pressure < 8.3 psi
Dattami	500	Valta e a Llierla		\ \	\ \				Voltage > 10 yells
Battery	563	Voltage High		Y	Y				Voltage > 18 vdc
Voltage	562	Voltage Low		Y	Y				Voltage < 9.5 vdc and RPM > 1500
5V	643	5\/E1 High \/oltogo		Υ				l	5VE1 > 5.4 vdc
External	642	5VE1 High Voltage 5VE1 Low Voltage		Υ					5VE1 < 4.6 vdc
External	042	SVET LOW Vollage		ı					3VE1 < 4.0 VdC
TPS	123	TPS1 High Voltage	Υ						TPS1 voltage > 4.8 vdc
	122	TPS1 Low Voltage	Y						TPS1 voltage < 0.2 vdc
	223	TPS2 High Voltage	Y						TPS2 voltage > 4.8 vdc
	222	TPS2 Low Voltage	Y						TPS2 voltage < 0.2 vdc
	221	TPS1 > than TPS2	Y						(TPS1 percent - TPS2 percent) > 20%
	-	TPS1 < than TPS2	Y						(TPS1 percent - TPS2 percent) < -20%
1	121						-	├	· · · · · · · · · · · · · · · · · · ·
	121 2112		Υ						(target TPS - actual TPS) > 20%
	2112	Unable to reach > TPS	Y						(target TPS - actual TPS) > 20% (target TPS - actual TPS) < -20%
			Y Y Y						(target TPS - actual TPS) > 20% (target TPS - actual TPS) < -20% Uses same parameters as individual

CONTINENTAL TME27 ENGINE FAULT CODES

System	Code	Fault Name	Shutdown	Adaptive Learn	Adaptive Learn KC*	Power Derate 1	Power Derate 2	Low Rev Limit	Fault Conditions
FPP	2122	FPP1 High Voltage	1		Ė			Y	FPP1 voltage > 4.8 vdc
	2123	FPP1 Low Voltage						Υ	FPP1 voltage < 0.2 vdc
	1.10	Titi Low Volkage			<u> </u>		<u> </u>	•	TTT Totage Voiz Vae
Engine	219	Max Govern Speed Override							RPM > 3400
Speed	1111	Rev Fuel Limit							RPM > 3600
	1112	Spark Rev Limit	Υ						RPM > 3800
Oil Pressure	524	Oil Pressure Low	Y						Oil pressure pulled-up input with a threshold voltage of 2.5 vdc and RPM > 500 and run-time > 30 s
Adaptive Learn	171	AL High Gasoline Bank 1							AL_BM > 30% and RPM between 0-9999 and MAP between 0-99 psi
	172	AL Low Gasoline Bank 1							AL_BM < -30% and RPM between 0-9999 and MAP between 0-99 psi
	1161	AL High LPG							AL_BM > 30% and RPM between 0-9999 and MAP between 0-99 psi
	1162	AL Low LPG							AL_BM < -30% and RPM between 0-9999 and MAP between 0-99 psi
Closed Loop	1155	CL High Gasoline Bank 1							CL_BM > 40% and RPM between 0-9999 and MAP between 0-99 psi
	1156	CL Low Gasoline Bank 1							CL_BM <-40% and RPM between 0-9999 and MAP between 0-99 psi
	1151	CL High LPG							CL_BM > 35% and RPM between 0-9999 and MAP between 0-99 psi
	1152	CL Low LPG							CL_BM < -35% and RPM between 0-9999 and MAP between 0-99 psi
	1	I		<u> </u>		1	· · · ·	·	'
Catalyst Monitor	420	Gasoline Cat Monitor		Υ	Υ				EGO2 RMS > 0.005 phi and EGO2 RMS > EGO1 RMS* 50% and EGO2 RMS > CL waveform RMS* 50%
	1165 ,	LPG Cat Monitor Adaptive Learn Key Cycle		Υ	Υ				EGO2 RMS > 0.005 phi and EGO2 RMS > EGO1 RMS* 50% and EGO2 RMS > CL waveform RMS* 50%

CONTINENTAL TME27 ENGINE FAULT CODES

System EGO	Code	Fault Name EGO Open/Lazy Pre-cat 1	Shutdown	Adaptive Learn	≺ Adaptive Learn KC*	Power Derate 1	Power Derate 2	Low Rev Limit	Fault Conditions EGO cold persistently > 120 seconds
Sensors	154	EGO Open/Lazy Post-cat 1		Y	Y				EGO cold persistently > 120 seconds
30113313		200 0pon/202y 1 001 001 1		•	•				Zue cola poroletenaj > 120 coconac
Injectors	261	Injector Loop Open or Low-Side Short to Ground		Υ	Υ	Υ			Injector off-state low-side < 4 vdc and battery voltage > 9 vdc
	262	Injector Coil Shorted		Υ	Υ	Υ			Injector on-state low-side > 4 vdc and battery voltage < 16 vdc
Power	686	Relay Control Ground Short							
Relay	685	Relay Coil Short							
Control	687	Relay Coil Short to Pwr							
Coil									
Tach	2618	Tach Output Ground Short							Does not turn on MIL
Output	2619	Tach Output Short to Pwr							Does not turn on MIL
	T								
EPR	1171	EPR Delivery Pressure		Υ			Υ		MJ actual-commanded press > 4 in. H20
Diagnostics		> than expected							
LPG	1172	EPR Delivery Pressure		Υ			Υ		MJ actual-commanded press < 4 in. H20
		< than expected							
	1173	EPR Comm Lost		Υ			Υ		No MJ packets received within 500 ms
	1174	EPR Voltage Supply High		Υ			Υ		
	1175	EPR Voltage Supply Low		Υ			Υ		
	1176	EPR Internal Actuator		Υ			Υ		
		fault detection							
	1177	EPR Internal Circuitry		Υ			Υ		
		fault detection					.,		
	1178	EPR Internal Comm		Υ			Υ		
		fault detection							

^{*} Adaptive Learn Key Cycle

CONTINENTAL TME27 ENGINE FAULT CODES

System	Code	Fault Name	Shutdown	Adaptive Learn	Adaptive Learn KC*	Power Derate 1	Power Derate 2	Low Rev Limit	Fault Conditions
Cam	342	Cam Loss		Υ	Υ				No cam pulse in 4 cycles and RPM > 1000
Crank Sensors	337	Crank Loss							Cam pulses without crank activity > 6 cam pulses
	341	Cam Sync Noise		Υ	Υ				Number of invalid cam re-syncs = 1 within a time window of <= 700 ms
	336	Crank Sync Noise		Υ	Υ				Number of invalid crank re-syncs = 1 within a time window of <= 800 ms
	16	Never Crank Synced at Start							Cranking revs without sync < 4 revs and RPM > 90 rpm
				•					
Internal	606	COP Failure			Υ		Υ		
Processor	1612	RTI 1 Loss			Υ		Υ		
Diagnostics	1613	RTI 2 Loss			Υ		Υ		
	1614	RTI 3 Loss			Υ		Υ		
	1615	A/D Loss			Υ		Υ		
	1616	Invalid Interrupt			Υ		Υ		
	601	Flash Checksum Invalid			Υ		Υ		
	604	RAM Failure			Υ		Υ		
J1939	1625	Shutdown Request							Number of shutdown requests >= 1
Network	1626	CAN Tx Failure							TX error counter > 100
	1627	CAN Rx Failure							Rx error counter > 100
	1628	CAN Address Conflict Failure							Address conflict counter > 5

^{*} Adaptive Learn Key Cycle

Part No. 1258748 Z-80/60 5 - 35

This page intentionally left blank.

November 2014 Section 6 • Schematics

Schematics

Observe and Obey:

- ☑ Troubleshooting and repair procedures shall be completed by a person trained and qualified on the repair of this machine.
- ☑ Immediately tag and remove from service a damaged or malfunctioning machine.
- ☑ Repair any machine damage or malfunction before operating the machine.

Before Troubleshooting:

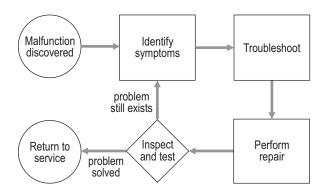
- Read, understand and obey the safety rules and operating instructions printed in the Operator's Manual on your machine.
- ☑ Be sure that all necessary tools and test equipment are available and ready for use.

About This Section

There are two groups of schematics in this section.

Electrical Schematics

AWARNING


Electrocution hazard. Contact with electrically charged circuits could result in death or serious injury. Remove all rings, watches and other jewelry.

Hydraulic Schematics

AWARNING

Bodily injury hazard. Spraying hydraulic oil can penetrate and burn skin. Loosen hydraulic connections very slowly to allow the oil pressure to dissipate gradually. Do not allow oil to squirt or spray.

General Repair Process

Wire Circuit Legend

Circuit numbering

- 1 Circuit numbers consist of three parts: the circuit prefix, circuit number and circuit suffix. The circuit prefix indicates the type of circuit. The circuit number describes the function of the circuit. The circuit suffix provides an abbreviation for the number or may be used to further define the function of this portion of the circuit. It also may be used to indicate the final end of the circuit, i.e., LS or limit sw.
- 2 The circuit number may be used more than once in a circuit.

For Example:

C 74 PL – This is the circuit for the lockout valve #1. C stands for control, 74 is the number of the circuit for the primary #1 lock out valve. PL stands for Primary Lockout.

S 62 BST – This is the circuit that communicates to the onboard computers of the machine that the boom is fully stowed. S stands for safety, 62 is the number of the circuit for boom stowed and BST stands for Boom Stowed.

P 48 LP - P stands for power. 48 is the circuit number for work lamps and LP stands for Lamp.

R 48 LP - R stands for relay. In this case it is the wire that feeds the relay coil for the work lamp. All other numbers remain the same.

Circuit prefix

С	Control
D	Data
E	Engine
G	Gauges
Ν	Neutral
Р	Power
R	Relay Output
s	Safety
٧	Valve

Circuit suffix

Definition

AC Generator	GEN
Alternator Field	AF
Angle	ANG
Auxiliary Boom Valve	ABV
Auxiliary Forward Valve	AFV
Auxiliary Hydraulic Pump	AH
Auxiliary Platform Valve	APV
Auxiliary Reverse Valve	ARV
Auxiliary Steer/Drive Valve	ASV
Axle Extend Valve	AXE
Axle Oscillate	AXO
Axle Retract Valve	AXR
Axle Front Position	FAP
Axle Rear Position	RAP
Battery	BAT
Boom Extended	BEX
Boom Stowed	BST
Brake	BRK
Bypass Valves	BV
Calibrate	CAL
CAN Signal	CAN
CAN Shield	SHD
CATS Module	CAT
Chain Break	CNK
Data High	DTH
Data Low	DTL
Drive Chassis Controller	DCN
Drive Enable	DE
Drive Enable Left	DEL
Drive Enable Right	DER
Electrical Displacement Control	EDC
Envelope Light	ENV
Engine Speed Select	ESP
Engine Status Lamp	ESL
Envelope Lockout	ENL
Extend/retract Lockout	ERL
Filter Restricted	FLR
Filter Switch	FLT
Flashing Beacon	FB
Float Switch	FS
Footswitch Signal	FTS
Forward	FWD
Fuel Pump	FP
Fuel Select (gas/LP)	FL
Fuel Solenoid	FSL

Suffix

Gevie

November 2014 Section 6 • Schematics

Definition	Suffix	Definition	Suffix
Function Enable	FE	Pressure Comp Enable	PCE
Ground Control	TCN	Pressure Sender	PSR
Ground	GND	Pressure Switches	PS
Horn	HRN	Primary Boom Angle Sensor	PBS
High RPM	HS	Primary Boom Down	PBD
Hydraulic Generator	HG	Primary Boom Ext/Ret Lockout Valve	PBL
Ignition	IGN	Primary Boom Extend	PBE
Jib Bellcrank Down	JBD	Primary Boom Extend/Retract Flow Control	PER
Jib Bellcrank Up	JBU	Primary Boom Retract	PBR
Jib Sensor	JBS	Primary Boom Angle Sensor	PBS
Jib U/D Control	JUD	Primary Boom Down	PBD
Jib Down	JD	Primary Boom Ext/Ret Lockout Valve	PBL
Jib Up/Down Flow Control	JFC	Primary Boom Extend	PBE
Jib Select Valve	JSV	Primary Boom Extend/Retract Flow Control	PER
Jib Up	JU	Primary Boom Retract	PBR
Jib E/R Control	JER	Primary Boom Up	PBU
Jib Ext	JBE	Primary Boom Up/Dwn Flow Control	PUD
Jib Ret	JBR	Primary Boom Extend/Retract Signal	PLS
Jib Rotate Left (CCW)	JRL	Primary Boom Up/Down Signal	PES
Jib Rotate Right (CW)	JRR	Primary Lockout	PL
Joystick 5 VDC Power	JPW	Primary Length Sensor	PSL
Lamps	LPS	Propel Signal	JPL
Left Front	LF	Program Setup Enable	PSE
Left Front Steer Sensor	LFS	Propel Lockout	PLL
Left Rear	LR	Proportional Valve	PRV
Left Rear Steer Sensor	LRS	Proximity Sensor	PXS
Limit Switch	LS	Receptacle	REC
Lift Speed Reduction	LSR	Recovery	RCV
Load Sensor	LDS	Retract Lockout	RL
Lockout	LO	Return	RET
Low RPM	LS	Reverse	REV
Low fuel	LOF	Right Front	RF
Motor Shift (Speed)	MS	Right Front Steer Sensor	RFS
Multi Function Valve	MFV	Right Rear	RR
Platform Control	PCN	Right Rear Steer Sensor	RRS
Primary Ext/Ret Lockout	PEL	RPM	RPM
Platform Level Down	PLD	Secondary Boom Angle Sensor	SBS
Platform Level Flow Control	PLF	Secondary Boom Elevated	SBL
Platform Level Up	PLU	Sec Boom Down	SBD
Platform Rotate Flow Control	PRF	Sec Boom Extend	SBE
Platform Rotate Control	PRC	Sec Boom Extend/Retract Flow Control	SER
Platform Rotate Left (CCW)	PRL	Sec Boom Retract	SBR
Platform Rotate Right (CW)	PRR	Sec Boom Up	SBU
Power	PWR	Sec Boom Up/Dwn Flow Control	SUD
Power to Length Sensor	PSL	Secondary Boom	SB
Platform Tilt Alarm	PTA	This list continues on the next page.	
Platform Tilt Sensor	PTS		

WIRE CIRCUIT LEGEND

Definition S	Suffix
Secondary Boom Lockout Valve (Extend)	SLE
Secondary Boom Lockout Valve (Riser Down)	SLD
Sensor	SEN
Spare	SP
Speed Sensor	SS
Start Aid (Glow Plug or choke)	SA
Starter	STR
Steer Control Signal	STC
Steering Valve Clockwise	SCW
Steering Valve Counter Clockwise	SCC
Temp Sender	TSR
Temp Switches	TS
Tether	TET
Tilt Alarm X axis	TAX
Tilt Alarm Y axis	TAY
Turntable or Ground Control Panel	TCN
Turntable Rotate Flow Control	TRF
Turntable Rotate Right (CW)	TRR
Turntable Rotate Signal	TRS
Turntable Tilt Alarm	TTA
Turntable Tilt Sensor	TTS
Test Switch	TSW

Wire Coloring

- 1 All cylinder extension colors are solid and all retract functions are striped black. When using black wire, the stripe shall be white.
- 2 All rotations that are LEFT or CW are solid, RIGHT or CCW are striped and black. When the wire is black, the stripe is white.
- 3 All proportional valve wiring is striped.

Wire Color Legend

November 2014 Section 6 • Schematics

Color, Circuit #, and Primary function		Color, Circuit #, and Primary function				
RD	1	Primary boom up drive	WH/BK	31	Reverse/EDC-B	
RD/BK	2	Primary boom down drive	WH/RD	32	Brake	
RD/WH	3	Primary boom up/dwn FC	BK	33	Start	
		proportional valve drive	BK/WH	34	Start aid (glow plug or choke)	
WH	4	Turntable rotate left valve drive	BK/RD	35	High engine speed select	
WH/BK	5	Turntable rotate right valve drive	BL	36	Steer clockwise	
WH/RD	6	Turntable rotate FC proportional	BL/BK	37	Steer counterclockwise	
		valve drive	BL/WH	38	Gas	
BK	7	Primary boom extend	BL/RD	39	LP	
BK/WH	8	Primary boom retract	OR	40	Limit switch signal stowed	
BK/RD	9	Primary boom Extend/Retract	OR/BK	41	RPM signal	
		proportional valve drive	OR/RD	42	Boom retracted signal	
BL	10	Secondary boom up valve drive	GR	43	Jib up	
BL/BK	11	Secondary boom down valve drive	GR/BK	44	Jib down	
BL/WH	12	Secondary boom up/dwn FC	GR/WH	45	AC Generator	
		proportional valve drive	WH	46	Drive horn	
BL/RD	13	Drive enable	WH/BK	47	Output power enable	
OR	14	Platform level up valve	WH/RD	48	Work lamp	
OR/BK	15	Platform level down valve	WH/BK	49	Motion lamp	
OR/RD	16	Platform up/dwn FC proportional	BL	50	Auxiliary boom	
		valve drive	BL/WH	51	Auxiliary steer	
GR	17	Platform rotate left valve driver	BL/RD	52	Auxiliary platform	
GR/BK	18	Platform rotate right valve driver	WH/BK	53	Boom envelope safety valve cutoff	
GR/WH RD	19 20	Jib select valve driver circuit 12 battery supply	BK/WH	54	Power to safety interlock switches (engine)	
WH	21	12 ignition supply	GR/BK	55	Axle oscillation	
BK	22	Keyswitch power to platform	RD	56	Foot switch/TCON estop power	
		ESTOP	RD/WH	57	Boom down safety interlock	
WH	23	Power to platform	RD/BK	58	Safety interlock to engine	
RD	24	Power to warning senders	GR/WH	59	Chain break circuit	
WH/BK	25	Power to oil pressure sender	GR/WH	60	Axle extend	
WH/RD	26	Power to temp sender	GR	61	Axle retract	
RD	27	Auxiliary power	OR	62	Boom stowed (safety)	
RD/BK	28	Platform level alarm	OR/RD	63	Power to boom envelope safety	
RD/WH	29	Drive motor shift (speed)			switch	
WH	30	Forward/EDC-A	This list	contir	nues on the next page.	

Color, Circuit #, and Primary function			Color, Circuit #, and Primary function					
OR/BK	64	Power for operational switches	BK	99	J1708 - (low)			
BL/WH	65	Low fuel indication	WH/RD	100	Outrigger lowered			
BL	66	Drive enable	WH/BK	101	Outrigger raised			
BL	67	Secondary boom not stowed	OR	102	Pothole protector up			
RD	68	Primary boom lowered	OR/RD	103	Pothole protector down			
		(operational)	BK/WH	104	Proprietary data buss –			
BL	69	Primary boom #1 extended			(i.e. ITT or AP)			
BL/WH	70	Primary boom #2 retracted	BK/RD	105	Proprietary data buss +			
BL/BK	71	Primary boom #2 extended			(i.e. ITT or AP)			
GN	72	Secondary boom extend	GR	106	Spare			
GN/BK	73	Secondary boom retract	RD	107	Alternator field			
RD	74	Primary #1 Lockout	BL/WH	108	Engine status			
RD/WH	75	Primary #2 Lockout	GR/WH	109	Sensor pwr			
BL	76	Pri boom #3 extended	BK	110	Sensor return			
WH	77	Lower angle #1 operational	OR	111	Steer signal			
WH/BK	78	Upper angle #2 operational	RD	112	Steer signal to solenoid valve			
BK	79	power from TCON ESTOP	OR/RD	113	Multi function valve			
N/A	80	Can 2.0/J1939 Shield	BK/RD	114	Load moment overweight			
GR	81	Can 2.0/J1939 Low	RD/BK	115	Load moment underweight			
YL	82	Can 2.0/J1939 High	OR	116	Hydraulic oil cooler			
GR/WH	83	Tilt signal x axis	RD	117	Flashing beacon			
GR/BK	84	Tilt signal y axis	OR	118	Lift speed reduction			
GR	85	Tilt sensor power	BL	119	Hydraulic pressure sensor output			
OR	86	Hydraulic filter restricted	OR	120	Oil cooler fan			
RD	87	Platform level safety power	GR	121	Axle oscillate LEFT			
RD/BK	88	Platform level safety output	GR/BK	122	Axle oscillate RIGHT			
BR RD/BK	89 90	Platform level safety ground Proximity kill	RD/BK	123	Primary boom angle signal operational			
RD/WH	91	Gate Interlock	RD/WH	124	Secondary boom angle signal			
WH/BK	92	Motor speed (LO/HI)			operational			
WH/RD	93	Motor bypass	WH/RD	125	Secondary boomlockout			
WH	94	Load sensor			(Ext Enable)			
OR	95	Tether ESTOP return	WH/BK	126	Secondary boom lockout			
RD	96	Tether power			(Riser Down Enable)			
BK	97	Tether ESTOP power	GR	127	ECU test switch			
WH	98	J1708 + (high)	OR/RD	128	Low engine speed			

November 2014 Section 6 • Schematics

Color, Circuit #, and Primary function			Color, Circuit #, and Primary function		
RD/BK	129	Descent alarm		163	Pri extend/retract signal
WH/RD		Travel alarm	RD/WH		Pri up/down signal
BL	131	Motion alarm	WH/RD		TT Rotate signal
GR	132	Platform load input	OR	166	Boom length signal safety
GR/WH		Platform load alarm	OR/BK	167	Boom length signal operational
GR/BK	134	Key switch power	BL/RD	168	Primary boom hydraulic valve
BL/WH	135	Fuel pump			lockout
RD	136	Power to safety module	GN	169	Envelope active LED
RD/WH	137	Propel power (P_38)	WH/RD	170	Load sense relay source
RD/BK	138	Pri boom up/sec boom dwn-Ext	WH/BK	171	Load sense relay sink
		(P_11/30)	BL	172	UP/DN flow control ground
WH/RD	139	Turntable rot FC safety (P_39)	BK	173	Ext/Ret flow control ground
OR/RD	140	Boom envelope safety	WH	174	Key switch power, ground position
RD	141	Primary boom angle signal safety	WH/BK	175	Load sensor signal operational
OR	142	Secondary boom angle signal	GN/WH	176	Secondary extend/retract FC
		safety	BL/RD	177	Extend/retract lockout
BL/RD	143	Drive enable left	BK	178	Control module status light
BL/WH	144	Drive enable right	GN	179	Drive power relay
RD/WH	145	Calibrate	BK	180	Lift power relay
BL	146	Jib bellcrank up FC	OR	181	48 Volt alternator field (or battery)
BL/BK	147	Jib bellcrank down FC	RD	182	24 Volt battery
BL/WH	148	Jib bellcrank sensor	BL	183	Envelope or load sense recovery
GR/WH	149	Jib Up/Down FC	WH	184	Program setup enable
GR/BK	150	Hydraulic generator bypass	WH	185	Encode A
GR	151	Hydraulic EDCoutput	BL	186	Encode B
BK	152	Injector retard	BL	187	Bootstrap or program enable
BK	153	Jib extend	GR	188	Safety cross check
BK/WH	154	Jib retract	BK	189	Data receive
OR/RD	155	Pressure comp enable	BK/WH	190	Data transmit
GN/WH	156	Jib Up/Down	WH/RD	191	Multi-Function pressure relief
BK/RD	157	Jib Ext/Ret	WH/BK	192	Jib rotate left
BL/RD	158	Spare	WH/RD	193	Jib rotate right
BL/WH	159	Steer joystick signal	WH/RD	194	Speed select input
WH/RD	160	Propel joystick signal	OR/RD	195	Electric brake source
WH/BK	161	Sec boom joystick signal	YL	196	2.5V Sensor power
OR	162	Joystick 5 VDC power	BR	N/A	Ground or return

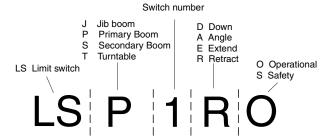
Limit Switches and Angle Sensors

Types of Limit Switches

There are two types of limit switches, found in various locations throughout the machine: mechanical-type **operational** or **safety** switches. As in aircraft, which features redundant safety systems, each mechanical operational switch is backed up with a separate, independently functioning safety switch.

The mechanical-type **operational** or **safety** switches are used to sense a positive displacement or movement of the limit switch actuator, or arm, as the machine moves through its range of operational functions. Included in this group are envelope limit switches which sense the extended length and angle of the booms and rotational position of the turntable.

For example, when the secondary boom is fully raised and the operational switch is activated, it tells the ECM at the ground controls to start extending the secondary boom.

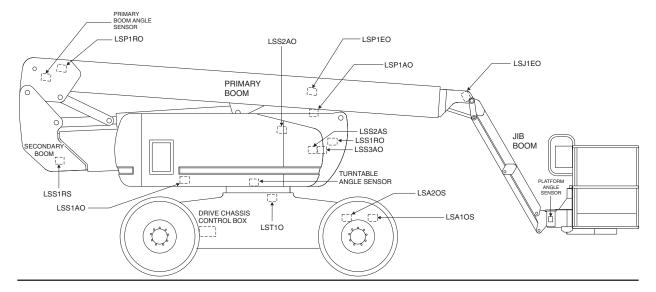

Another example is the drive enable limit switch, which disables the drive function anytime the boom is rotated past the rear axles, indicated by the 'circle' end of the drive chassis.

In some cases, the engine will be stopped if safety parameters are exceeded.

Limit Switch Numbering

LSP1AO	Primary boom angle stowed
LSP1RO	Primary boom length retracted
LSP1EO	Primary boom length fully extended
LSS1AO	Secondary boom angle, fully stowed
LSS2AO	Secondary boom angle, fully raised
LSS3AO	Secondary boom angle, 25° to 30°
LSS2AS	Secondary boom angle safety
LSS1RO	Secondary boom fully retracted
LSS1RS	Secondary boom fully retracted, safety
LSJ1EO	Platform level fully extended
LST10	Drive enable mechanical
LSA1OS	Oscillate axle, right side
LSA2OS	Oscillate axle, left side

Numbering Legend



6 - 8 Z-80/60 Part No. 1258748

November 2014 Section 6 • Schematics

LIMIT SWITCHES AND ANGLE SENSORS

Limit Switch and Angle Sensor Legend

LSA10S: Limit switch, Axle #1 Oscillating Operational. Activates the axle oscillate circuit on the right side.

LSA2OS: Limit switch, Axle #2 Oscillating Operational. Activates the axle oscillate circuit on the left side.

LST10: Limit switch, Operational. Activates the drive enable zone.

Turntable Angle Sensor: Measures the X axis and Y axis of the turntable. The alarm sounds at 4.5 degrees.

Primary Boom Angle Sensor (PBS): Measures the Y axis angle of the primary boom. The operational range shall be +33 degrees to +73 degrees. The safety cutouts are set at +70 degrees and will disable boom up and stop the engine.

Platform Angle Sensor: Measures the angle of the platform. The range of measurement is +/- 20 degrees. The safety cutout is set at +/- 10 degrees from gravity and will disable the primary and secondary boom up/down functions and the platform level up/down functions.

LSS2AO: Limit switch, Secondary Boom #2 Angle Operational Switch. Secondary boom angle full extension, angle up all the way (secondary boom extend allowed).

LSS3AO: Limit switch, Secondary Boom #3 Angle Operational Switch. Secondary boom elevated to 30-35 degrees. Used to switch platform/primary boom leveling parameters.

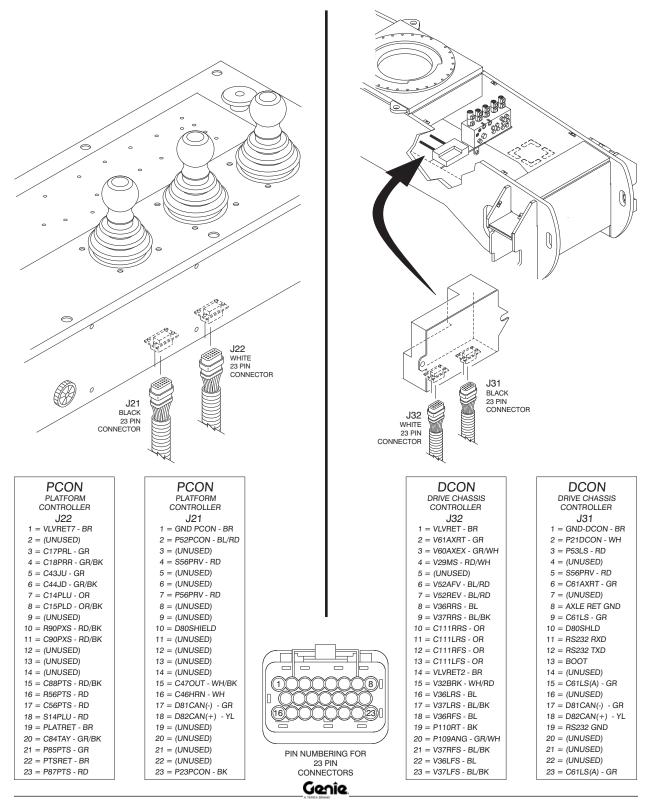
LSS2AS: Limit switch, Secondary Boom #2 Angle Safety Switch. Secondary boom angle full extension, angle up all the way (secondary boom extend allowed). Backup switch for LSS2AO.

LSS1RO: Limit switch, Secondary Boom #1 Retract Operational Switch. Secondary boom fully retracted (secondary boom down allowed).

LSS1RS: Limit switch, Secondary Boom #1 Retract Safety Switch. Secondary boom fully retracted (secondary boom down allowed). Backup switch for LSS1RO.

LSS1AO: Limit switch, Secondary Boom #1 Angle Operational Switch. Open when the secondary boom is fully lowered, closes when the boom is raised out of the stowed position. This switch limits the drive speed and disables the drive motor destroke. The other contacts close when the boom is fully lowered allowing the platform to be tucked underneath the mast for transport.

LSP1AO: Limit Switch, Primary Boom #1 Angle Operational. One side closes when the primary boom is raised from the stowed position, disabling the drive motor destroke and limiting the drive speed. The other side of the switch closes when the boom is fully lowered allowing the platform to be tucked underneath the mast for transport.

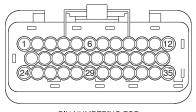

LSJ1EO: Limit Switch, Jib Boom #1. Closes when the platform leveling cylinder is fully extended, disabling the primary boom down function.

LSP1EO: Limit Switch, Primary Boom #1 Extend Operational. Switch closes as the primary boom extends the last 6 to 12 inches signaling the computer.

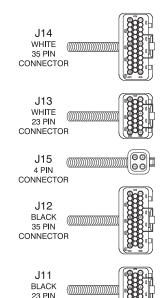
LSP1RO: Limit Switch, Primary Boom #1 Retract Operational. Switch closes when the primary boom is fully retracted.

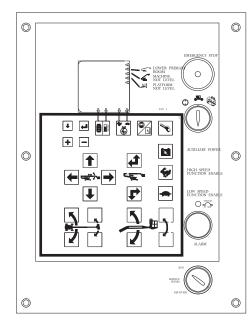
Genîe

Drive Chassis and Platform Controller Pin Legend



November 2014 Section 6 • Schematics


Turntable Controller Pin Legend



PIN NUMBERING FOR 23 PIN CONNECTORS

PIN NUMBERING FOR 35 PIN CONNECTORS

PIN NUMBERING FOR 4 PIN CONNECTOR

TCON

TURNTABI F CONTROLLER J11

- 1 = GNDPCON BR
- 2 = P52PCON BL/RD
- 3 = C46HN WH
- 4 = C47OUT WH/BK
- 5 = P23PCON BK
- 6 = S56PRV RD
- 7 = P56PRV RD
- 8 = R48LP WH/RD
- 9 = R49LP WH/BK
- 10 = D80-SHIELD
- 11 = (UNUSED)
- 12 = (UNUSED) 13 = (UNUSED)
- 14 = S132LDS BL/WH
- 15 = P97TET BK
- 16 = (UNUSED) 17 = D81CAN(-) - GR
- 18 = D82CAN(+) YL
- 19 = (UNUSED)
- 20 = TETFUNC WH
- 21 = TETGND BR
- 22 = P96TET RD
- 23 = P95TET OR

TCON

CONNECTOR

TURNTABLE CONTROLLER J12

- 1 = GNDDCON BR
- 2 = P21DCON RD
- 3 = P53LS WH/BK
- 4 = P54ENG BK/WH 5 = S56PRV - RD
- 6 = P21DCON RD
- 7 = P58LS RD/BK
- 8 = S59SBE GR/WH
- 9 = S121PBU GR
- 10 = P53LS WH/BK 11 = P53LS - WH/BK
- 12 = \$59\$BF- GB/WH
- 13 = C64LS OB/BL
- 14 = C65LOF BL/WH
- 15 = C66DREN BL
- 16 = C73SBR BL/RD
- 17 = C68PBD RD
- 18 = C64LS OR/BL
- 19 = C70PBR BL/WH 20 = C71PBE - BL/BK
- 21 = C67SBD BL
- 22 = C77SBU WH
- 23 = V74PRLO RD 24 = V75PRLO - RD/WH
- 25 = SNSR GND BR
- 26 = BOOM ANGLE PWR
- 27 = G119SR BL 28 = C124SBL - RD/BK
- 29 = C77AS WH
- 30 = C78PS WH/BK
- 31 = P56PRV RD
- 32 = PRIMARY ANGLE SENSOR INPUT
- 33 = SEC. ANGLE SENSOR INPUT
- 34 = P30
- 35 = VLVRET1 BR

TCON

TURNTABLE CONTROLLER J13

- 1 = VLVRET1 BR
- 2 = C35RPM BK/RD
- 3 = C21IGN WH
- 4 = C34SA BK/WH 5 = V30FWD - WH
- 6 = V31REV WH/BK
- 7 = C46HN WH
- 8 = C39LP BL/RD
- 9 = C33STR BK
- 10 = C30EDC WH
- 11 = C31EDC WH/BK
- 12 = C25PSR WH/BK
- 13 = C26TSR WH/RD
- 14 = RET85TTSR GR
- 15 = P85TTSR GR
- 16 = VLVRET2 BR
- 17 = (UNUSED)
- 18 = C41RPM OR/BK
- 19 = (UNUSED)
- 20 = C83TAX GR/WH
- 21 = C84TAY GR/BK
- 22 = C45GEN GR/WH
- 23 = VLVRET3 BR

TCON

TURNTABLE CONTROLLER

- J15 1 = BATVLV - RD
- 2 = BATGND BR
- 3 = BATGND BB
- 4 = BATECU RD

TCON TURNTABLE

CONTROLLER

- J14 1 = VLVRET4 - BR
- 2 = C03PBF RD/WH
- 3 = C09PERF BK/RD
- 4 = C06TRF WH/RD
- 5 = C12FBFC BL/WH
- 6 = C72SBE BL/WH
- 7 = CO1PBU RD
- 8 = C02PBD RD/BK
- 9 = C07PBE BK 10 = C08PBR - BK/WH
- 11 = (UNUSED)
- 12 = C115SD BL/BK 13 = R49LP - WH/BK
- 14 = VLVRET5 BR
- 15 = S73SLD GR/BK 16 = (UNUSED)
- 17 = S10SLE BL
- 18 = C114LS BK/RD
- 19 = (UNUSED)
- 20 = C73SBR BL/RD 21 = C72SBE - BL/WH
- 22 = (UNUSED)
- 23 = C113MFV OR/RD
- 24 = (UNUSED)
- 25 = C04TRL WH 26 = C05TRR - WH/BK
- 27 = VLVRTN7 BR
- 28 = (UNUSED) 29 = (UNUSED)
- 30 = VLVRET6 BR
- 31 = (UNUSED)
- 32 = C27AUX RD
- 33 = P125SBLE WH/RD
- 34 = P126SBLD WH/BK 35 = (UNUSED)

Engine Relay and Fuse Panel Legend

Deutz TD2011L04i models

CF	R23
Lights	Option

	_			
CR28 Eng. Run/ Alt. Field	CR17 Oil Cooler	F20 20A Hi/Lo RPM	F23 30A Eng/Str/Alt	B1 Battery
		F22 60A	F7 20A	B2
Relay	Relay	Glow Plug	Cooler	Battery
	CR5	R <u>2</u> 1	CR1	CR15
	Horn Relay	Ignition	Start Relay	Glow Plua
		Ground		3

Deutz 2.9TF models

CR2 Eng. Run/	CR17 Oil	F27 30A ECU Power	F23 30A Eng/Str/Alt	B1 Battery
Alt. Field Relay	Cooler Relay	F22 60A Glow plug	F7 30A Horn/Options	B2 Battery
CR28 Fuel Pump	CR5 Horn Relay	CR39 Engine Shutdown	CR23 Lights Relay Option	CR41 Flashing Beacons Option
		R21 Ignition		CR15 Glow Plug
		Ground	70A	70A

Continental models

CR23 Lights Option	
Lights Option	

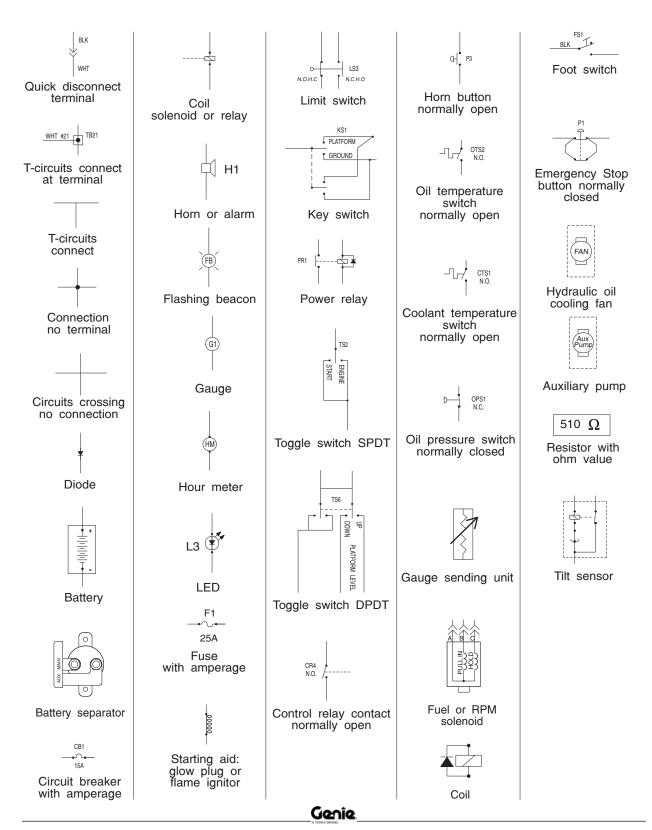
CR17 Oil Cooler	F17 30A Engine		B1 Battery
Relay		F7 20A Oil Cooler	B2 Battery
CR5 Horn Relay	R21 Ignition Ground	CR1 Start Relay	

ENGINE RELAY AND FUSE PANEL LEGEND

Perkins 804D models

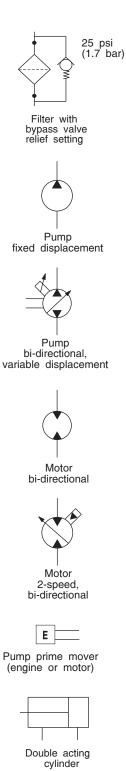
CR23
Lights Option

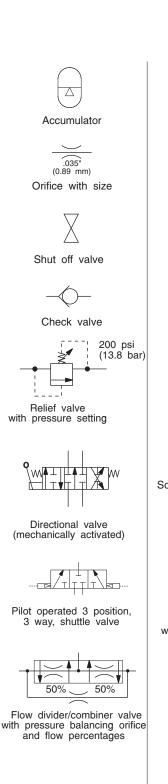
	0			
CR28		CB20 10A	F23 30A	B1
Eng. Run/		Hi/Lo RPM	Eng/Str/Alt	Battery
Alt. Field		F22 60A	F7 20A	B2
Relay		Glow plug	Cooler	Battery
CR4 CR5 RPM Relay Horn Relay		R21 Ignition Ground	CR1 Start Relay	CR15 Glow Plug

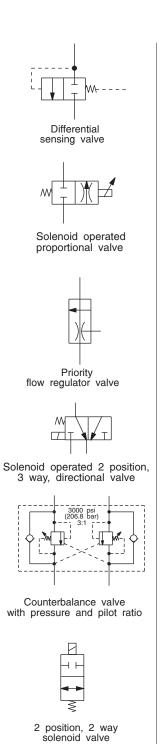

Perkins 404F-22T models

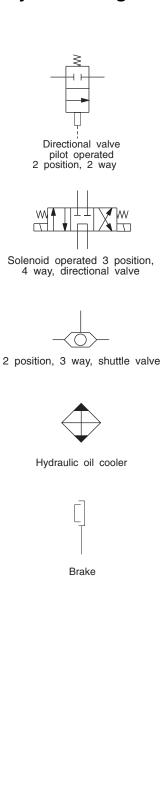
CR2	CR17	F27 30A	F23 30A	B1
Eng. Run/	Oil	ECU Power	Eng/Str/Alt	Battery
Alt. Field	Cooler	F22 60A	F7 30A	B2
Relay	Relay	Glow plug	Horn/Options	Battery
CR28 Fuel Pump	CR5 Horn Relay	CR81 ECU Power Relay	CR23 Lights Relay Option	CR41 Flashing Beacons Option
CR15B	CR79	R21	CR1	CR15
ARD	Burner	Ignition	Start Relay	Glow Plug
Glow Plug	Air Pump	Ground	70A	70A

Perkins Tier 4 Fuse Panel

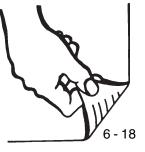

B1 Battery				
F28 15A ARD Glow Plug	F26 7.5A Burner Air Pump			
F29 5A	F30 10A			
ECU Batt #1 Linear SLND	ECU Batt #2 ARD INJ1			
F32 10A	F31 10A			
ECU Batt #4 Lamp&Relay	ECU Batt #3 ARD INJ2			
ECU Power Relay				


Electrical Symbols Legend

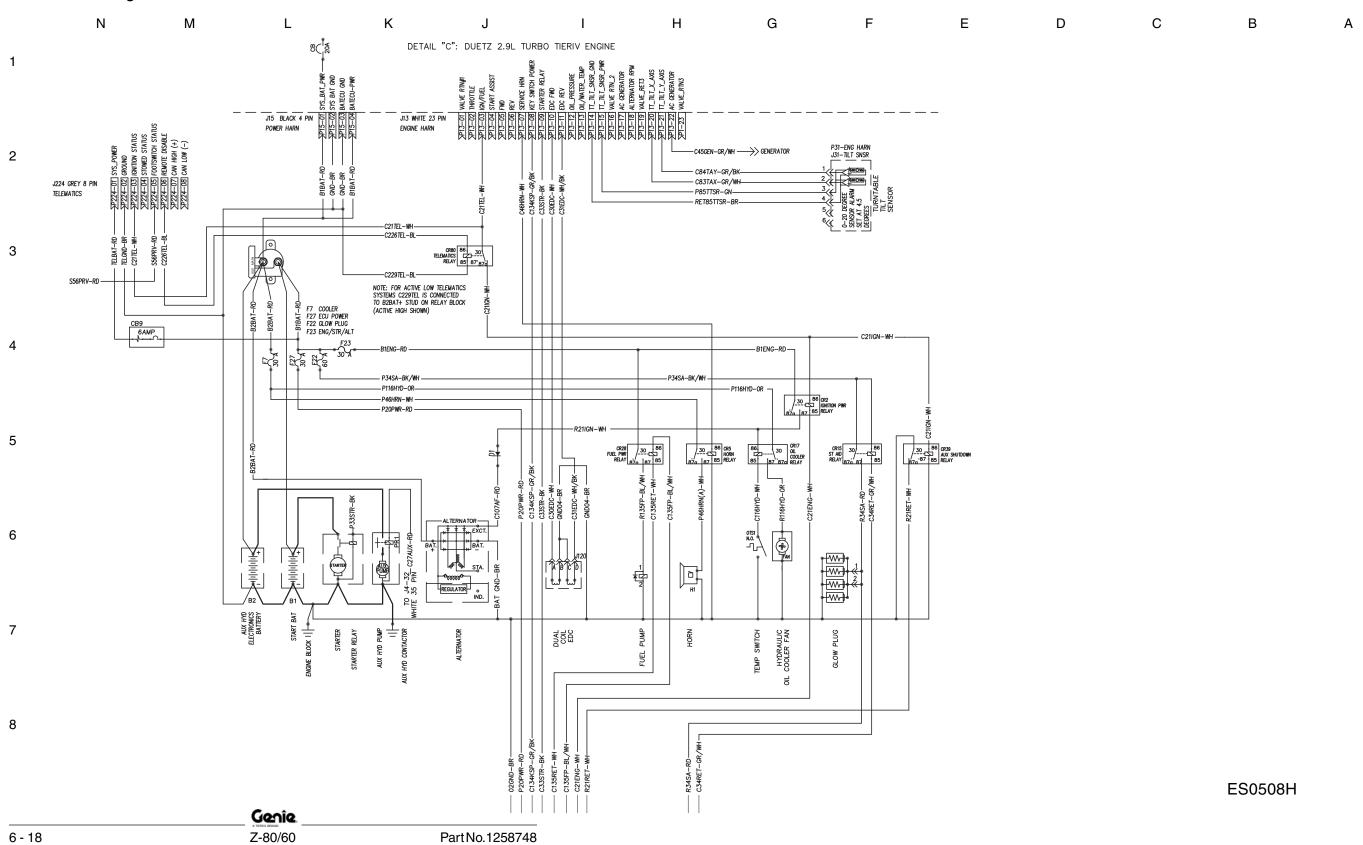



November 2014 Section 6 • Schematics

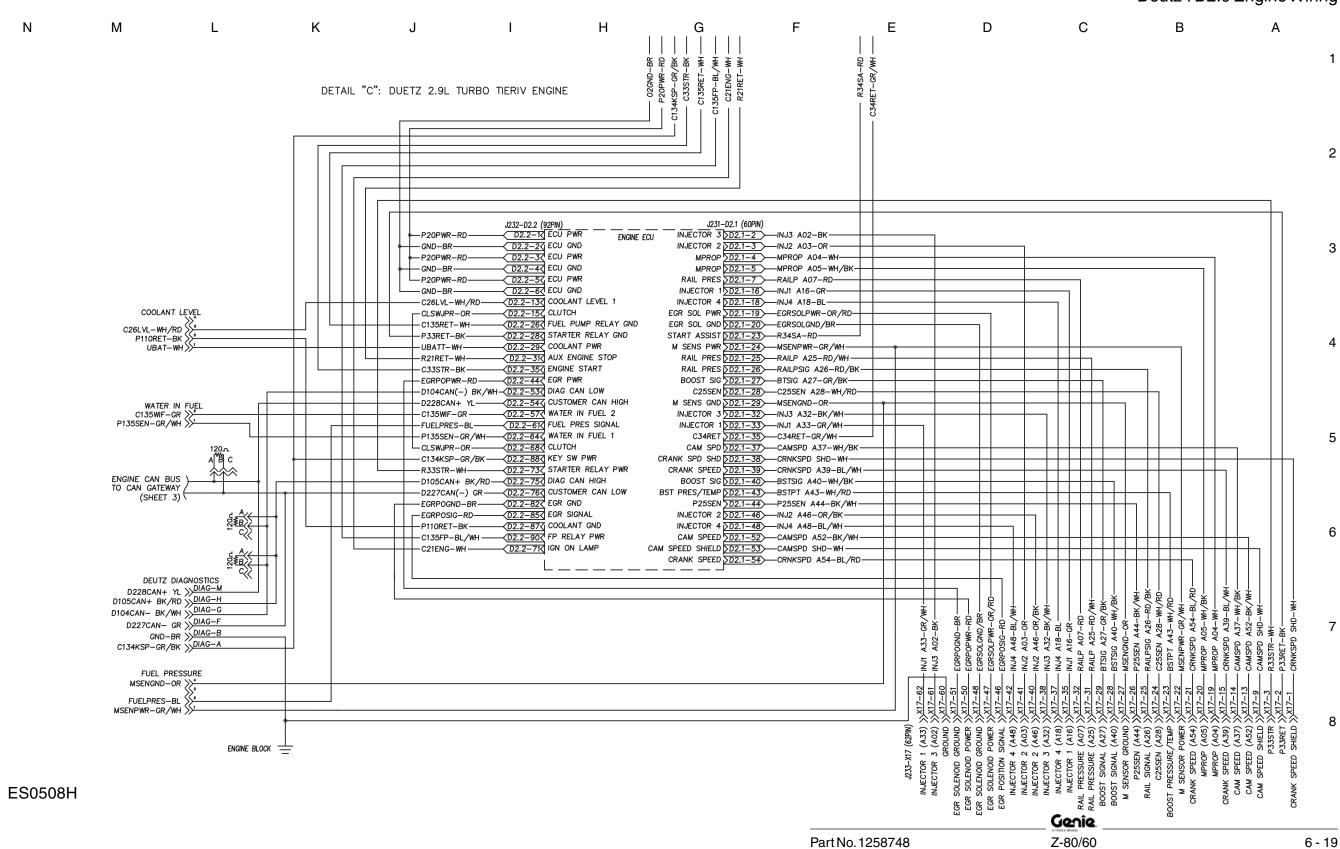
Hydraulic Symbols Legend


This page intentionally left blank.

November 2014 Section 6 • Schematics


Electrical Schematic - Engine Options

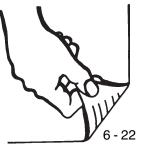
DeutzTD2.9 Engine


Electrical Schematic - Engine Options

DeutzTD2.9 Engine

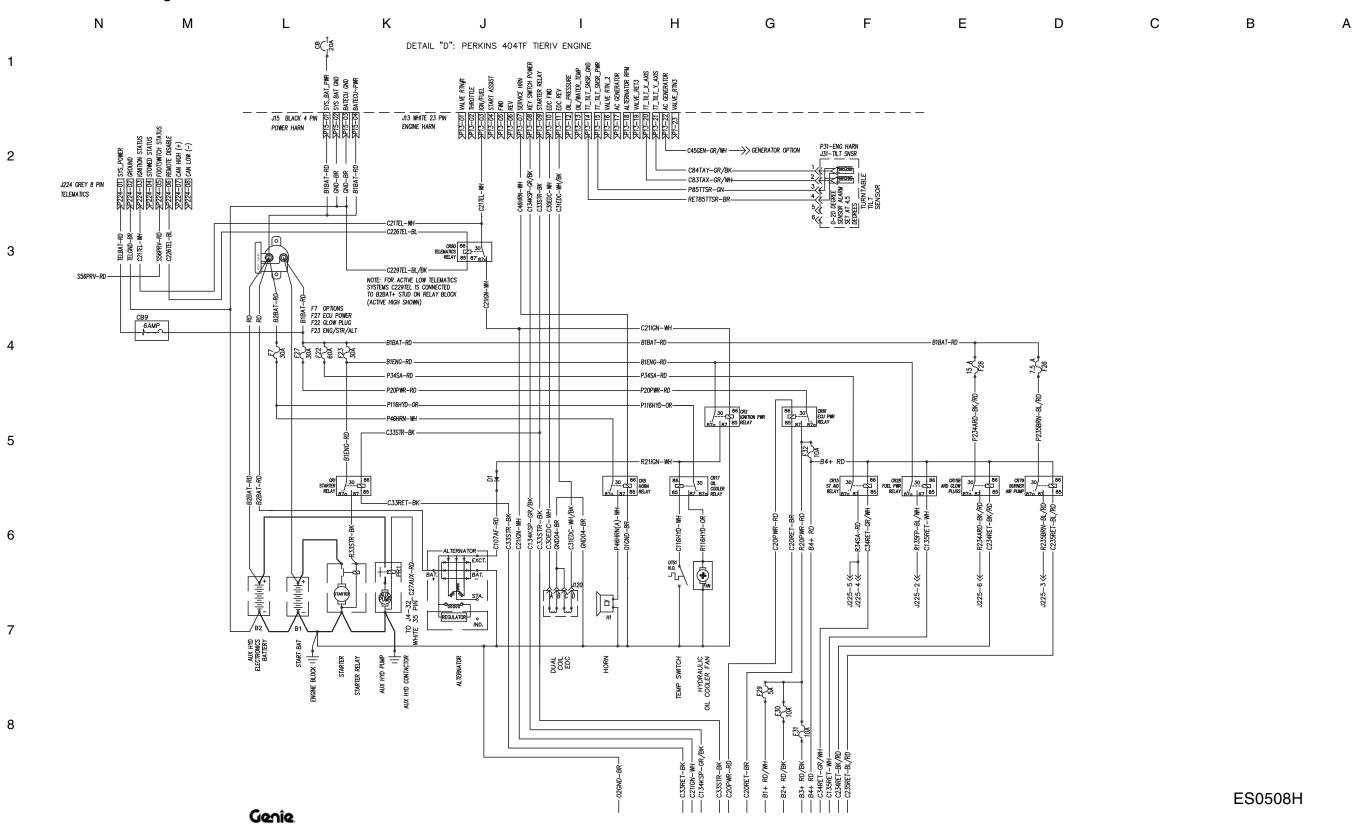
Electrical Schematic - Engine Options

DeutzTD2.9 Engine Wiring


Electrical Schematic - Engine Options
DeutzTD2.9 Engine Wiring

Electrical Schematic - Engine Options

Perkins 404F-22T Engine


Z-80/60

Part No.1258748

Electrical Schematic - Engine Options

Perkins 404F-22T Engine

6 - 22

D

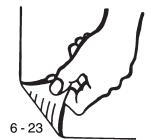
Electrical Schematic - Engine Options Perkins 404F-22T Engine Wiring

С В А

1

2 RD/WH 3 D227CAN- GR—(ENGINE CAN BUS TO CAN GATEWAY (SHEET 3) 5 DETAIL "D": PERKINS 404TF TIERIV ENGINE 7 ECM CONNECTOR 2 (80PIN)
PERKINS SUPPLIED HARNESS

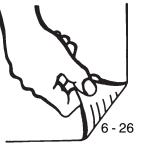
G


F

ES0508H

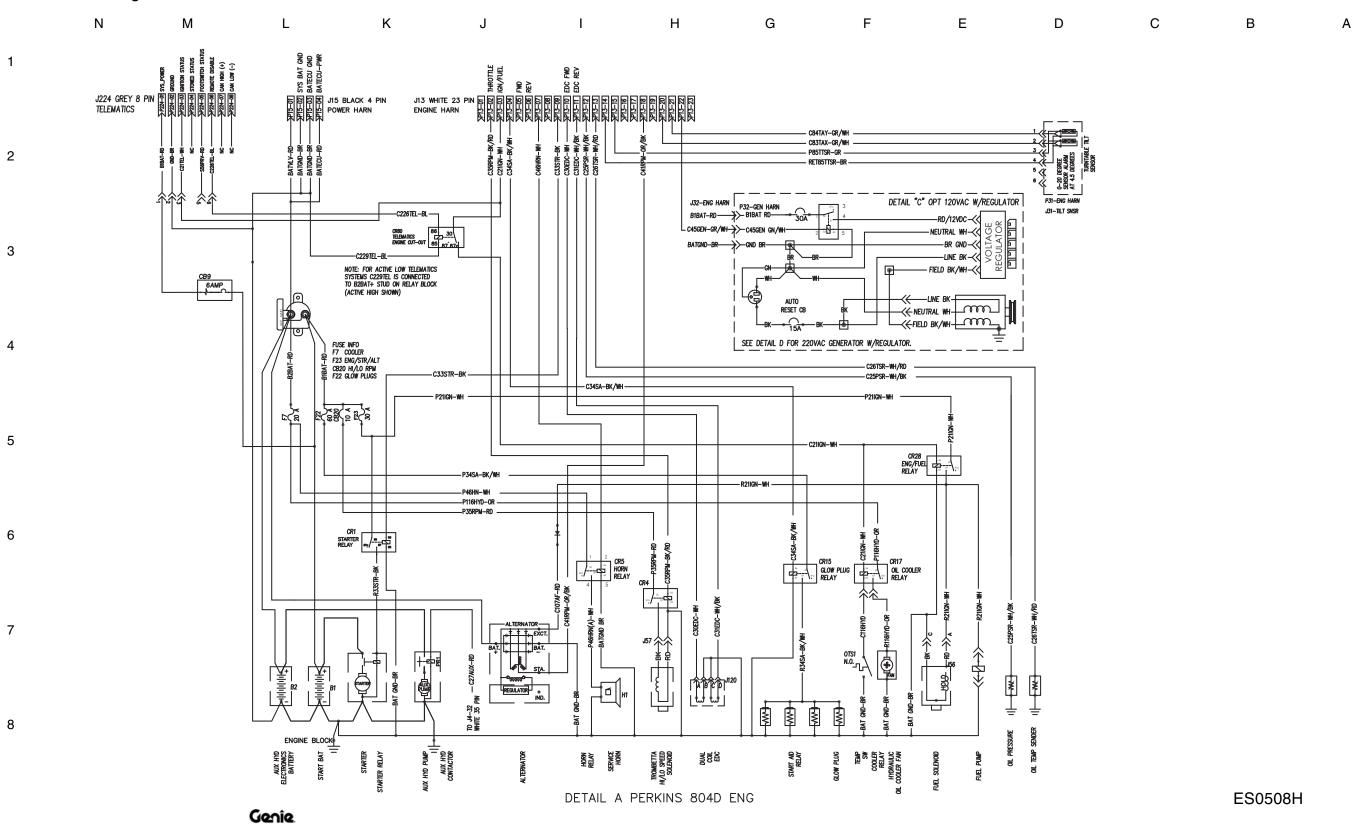
Ν

Part No. 1258748 Z-80/60 6 - 23


Electrical Schematic - Engine Options
Perkins 404F-22T Engine Wiring

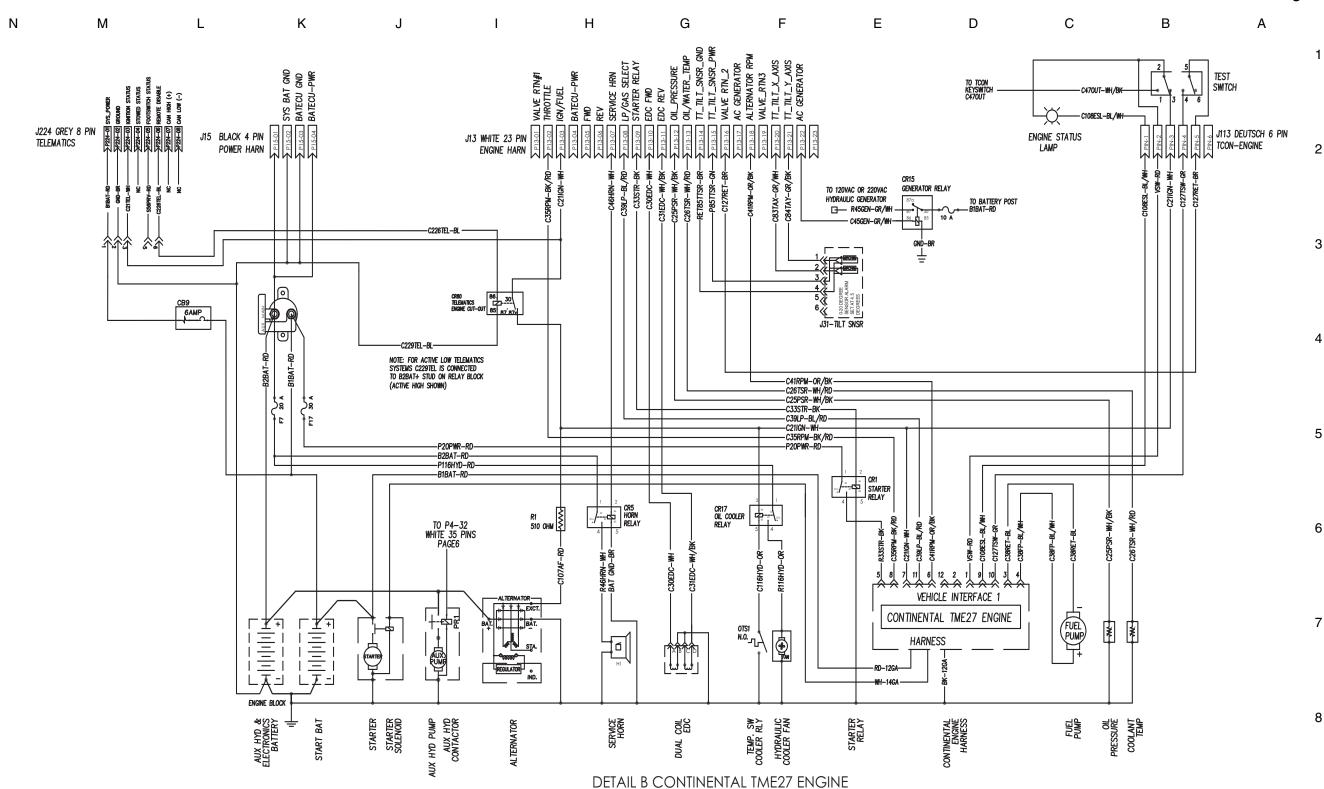
Electrical Schematic - Engine Options

Perkins 804D Engine


Z-80/60

Part No. 1258748

Electrical Schematic - Engine Options

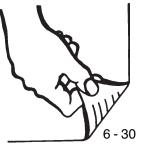

Perkins 804D Engine

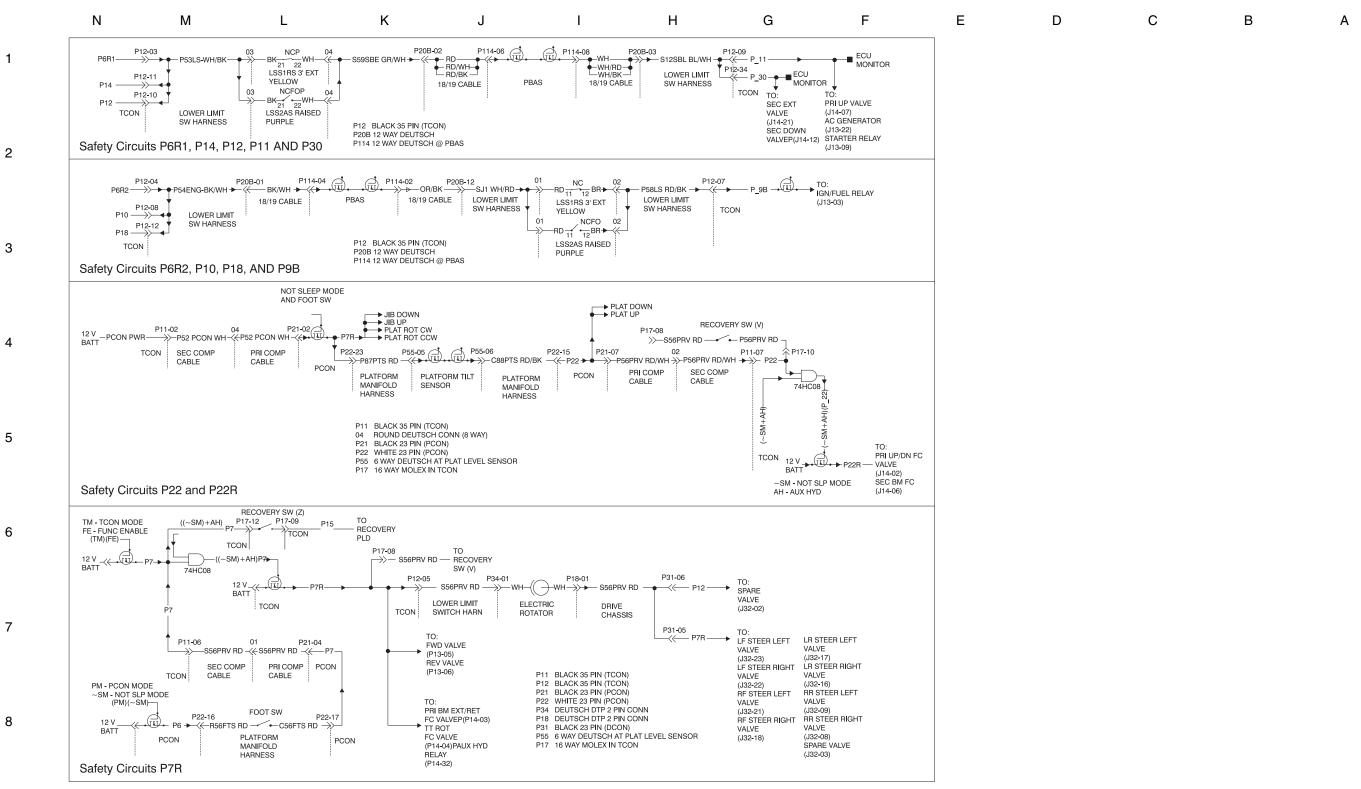
6 - 26



Electrical Schematic - Engine Options

Continental TME27 Engine

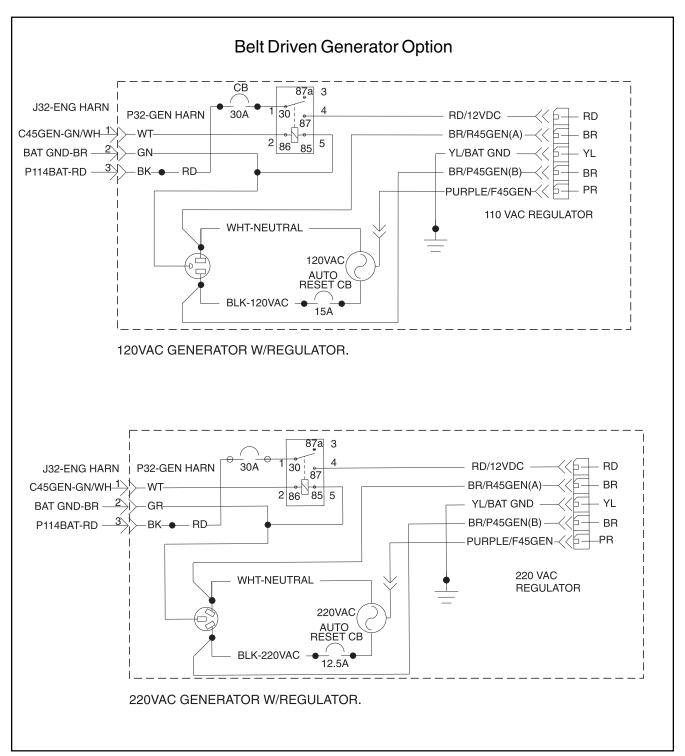

Electrical Schematic - Engine Options
Continental TME27 Engine


Electrical Schematic

Safety Circuits

Electrical Schematic

Safety Circuits

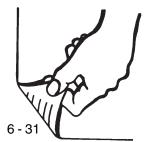

ES0508H

6 - 30 Z-80/60 Part No.1258748

Genîe

Electrical Schematic - Generator Options

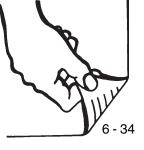
N M L K J I H G F E D C B A



MTE Hydraulic Generator Option PURGE-B 120VAC, 50Hz, 1 PH 120VAC, 60Hz, 1 PH 240VAC, 50Hz, 1 PH

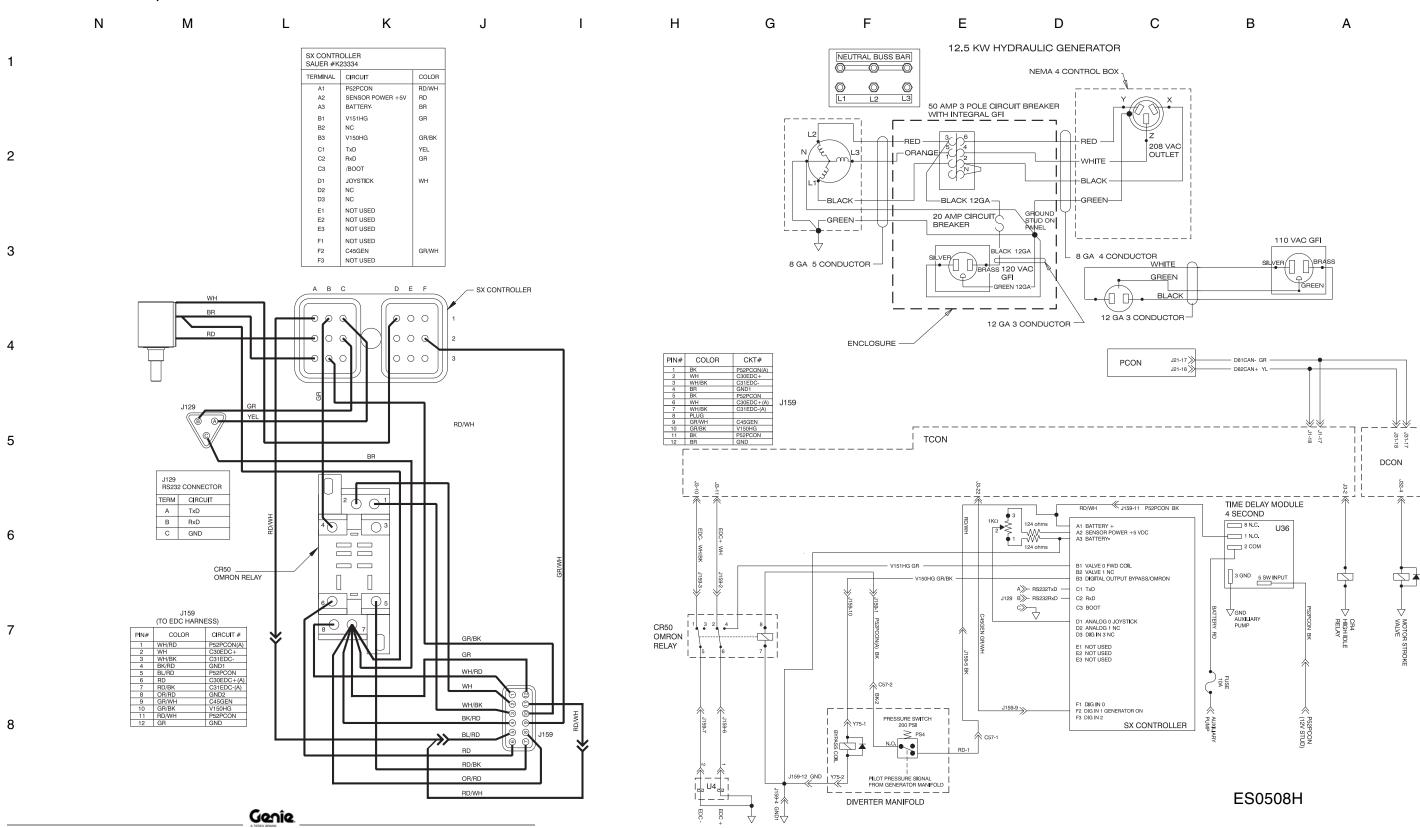
ES0508H

Part No. 1258748 Z-80/60 6 - 31


Electrical Schematic - Generator Options

Electrical Schematic

Welder Generator Option


Z-80/60

Part No. 1258748

Electrical Schematic

Welder Generator Option

6 - 34

Electrical Schematic

1

2

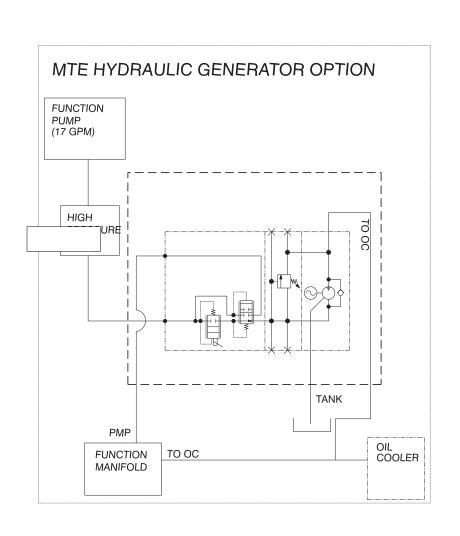
3

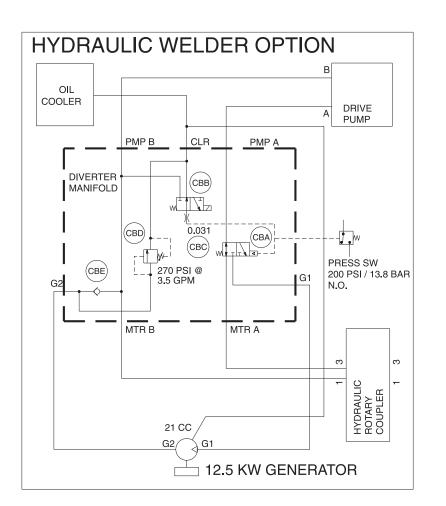
5

Hydraulic Generator Options

N M L K J I H G F E D C B A

FUNCTION PUMP (17 GPM)

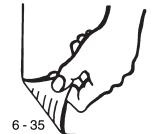

HIGH PRESSURE FILTER


GENERATOR

GENERATOR

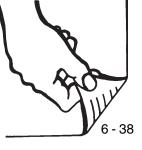
MANIFOLD

OIL COOLER


8

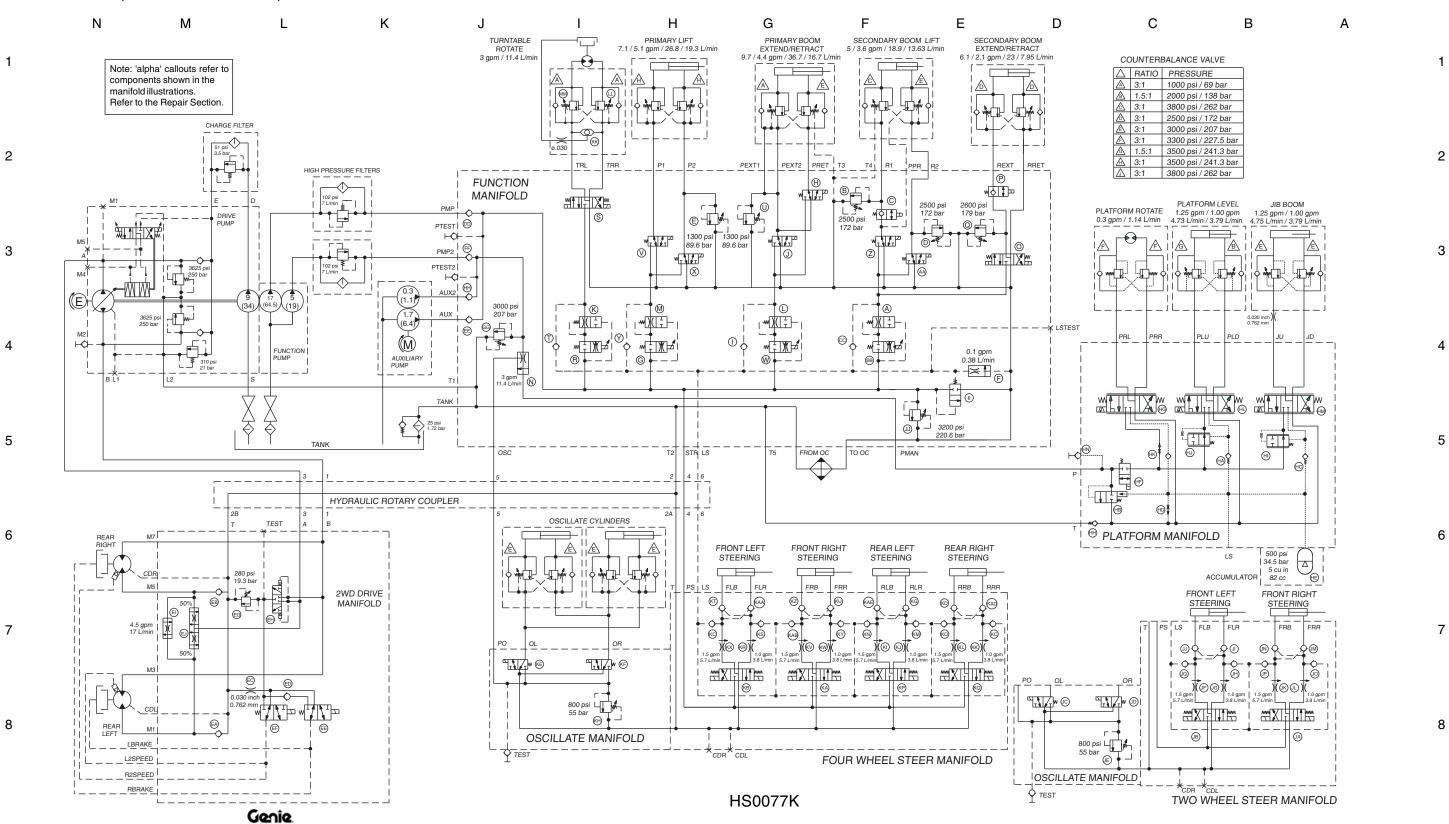
7

ES0508H


	Genîe.	
Part No. 1258748	Z-80/60	6 - 35

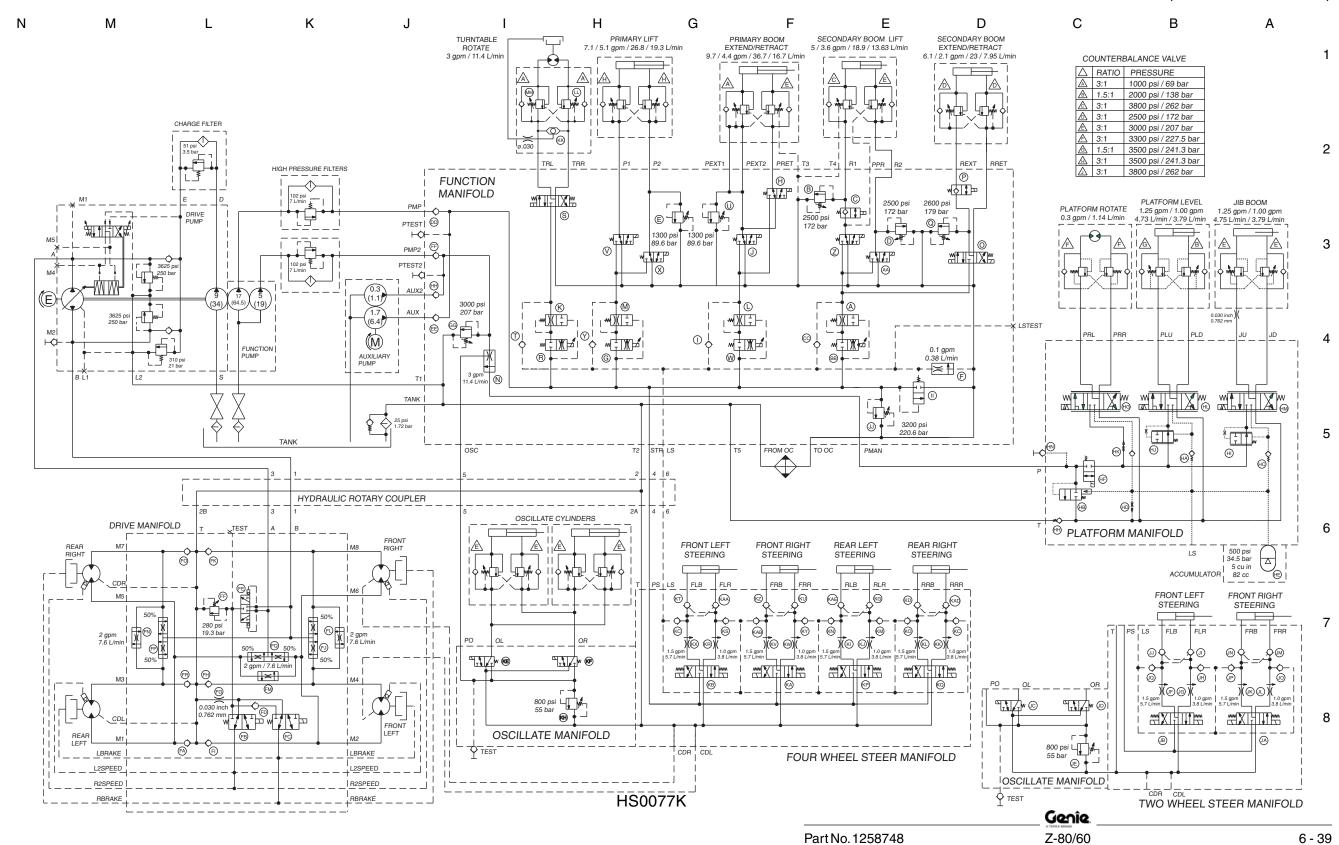
Hydraulic Schematic Hydraulic Generator Options

Hydraulic Schematic 2 Wheel Drive (2 and 4 Wheel Steer)

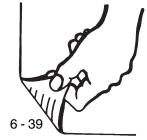

Z-80/60

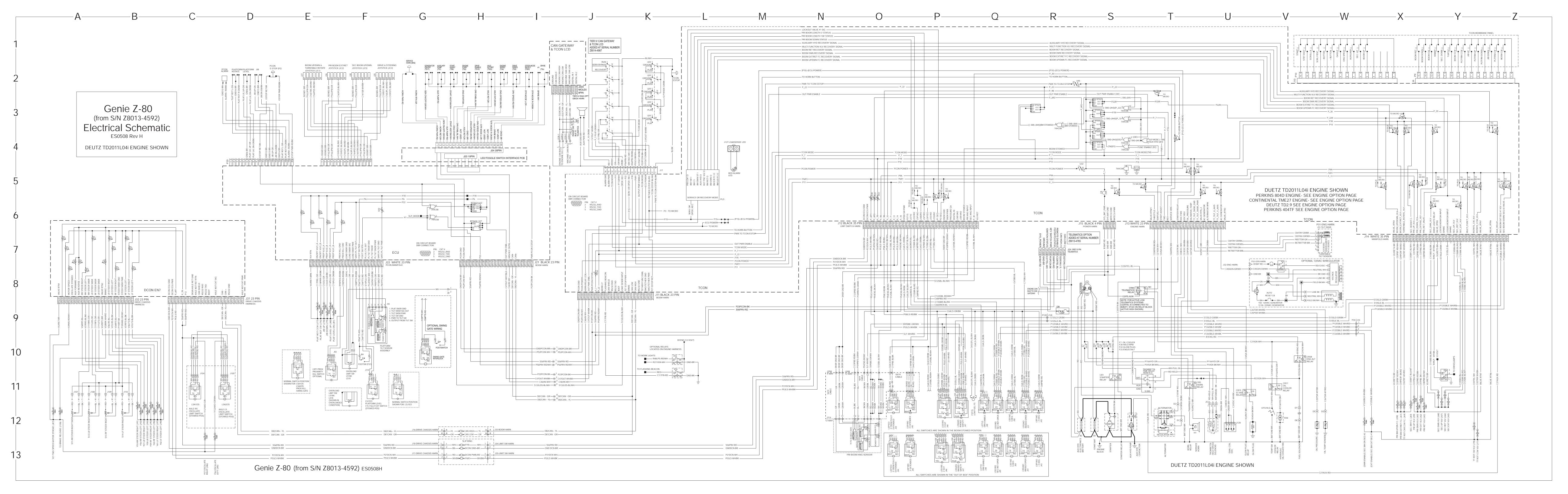
Part No. 1258748

6 - 38


Hydraulic Schematic

2 Wheel Drive (2 and 4 Wheel Steer)




Hydraulic Schematic

4 Wheel Drive (2 and 4 Wheel Steer)

Hydraulic Schematic 4 Wheel Drive (2 and 4 Wheel Steer)

California Proposition 65

Warning

The exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects or other reproductive harm.

Genie Sweden Phone 0046 3157 5101 Fax 0046 3157 5104

Genie France

Phone 0033 237 260 986 Fax 0033 237 260 998

Genie Iberica

Phone 0034 900 808 110 Fax 0034 935 725 080

Genie Germany

Phone 0800 180 9017 Phone 0049 4221 491 821 Fax 0049 4221 491 820

Genie U.K.

Phone 0044 1476 584 333 Fax 0044 1476 584 330

Genie Mexico City

Phone +52 55 5666 5242 Fax +52 55 5666 3241 Genie North America Phone 425.881.1800 Toll Free USA and Canada 800.536.1800

Genie Australia Pty Ltd. Phone +61 7 3375 1660

Fax 425.883.3475

Fax +61 7 3375 1002

Genie China

Phone +86 21 53853768 Fax +86 21 53852569

Genie Singapore

Phone +65 67533544 Fax +65 67533544

Genie Japan

Phone +81 3 6436 2020 Fax +81 3 5445 1231

Genie Korea

Phone +82 2 558 7267 Fax +82 2 558 3910

Genie Brasil

Phone +55 11 4082 5600 Fax +55 22 4082 5630

Genie Holland

Phone +31 183 581 102 Fax +31 183 581 566

Distributed By:

Service Manual Z-80/60

(from serial number Z8013-4592)

Part No. 1258748

Rev A

Genie.